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FOREWORD

C. W. Roberson

Physical Science & Technology Division
Office of Naval Research
Arlington, VA 22217

The Princeton workshop is the fifth in a series of workshops on Nonneutral Plasma
Physics. Previous workshops were in Washington D.C. (1988), [1] Irvine, CA (1992),
Berkeley, CA (1994), [2] and Boulder, CO (1997). This series of workshops started as a
result of a five-year Accelerated Research Initiative by the Office of Naval Research.
The Plasma Science Committee of the National Academy of Sciences was in the early
stages of formation at that time. We coordinated this Initiative with the PSC activities
by accepting an offer to hold the meeting at the Academy and inviting a number of
sponsors from other funding agencies.

The first meeting had one day devoted to nonneutral plasmas in traps and the
second day to radiation sources and accelerators. In addition to the proceedings, one of
the participants expanded his paper into a book.[3] Questions and answers were tape
recorded and published in the proceedings. This provides some interesting insights into
the motivations of the research. The University of California at San Diego (UCSD)
group is primarily interested in transport, and the group at the National Institute of
Standards and Technology (NIST) in trapping and laser cooling ions for atomic clocks.
The approach was quite different, but the two groups found common ground in single
component plasmas. Everyone was interested in working on a system in which precise
experiments and theory could be compared. These single-component plasmas in traps
provided the simplicity from the plasma point of view and the complexity from the
particle point of view to make them interesting to both communities.

The Berkeley workshop in 1994 focused on traps. Single component plasmas in
traps are sometimes referred to as microplasmas, since the density and size are limited
by space-charge (self field) effects. There has been steady progress in the technology-
intensive areas of accelerators and coherent free electron radiation sources. However it
is the developments in traps, laser cooling of ions and the unique transport properties of
single component plasmas that have led to the remarkable results of recent years.

At the Berkeley meeting, all experiments funded after the first workshop were
operational and many new efforts were emerging. The UCSD group had their ion trap
with the Laser Induced Fluorescence measurements of density and temperature
operating. They had invented the “rotating wall” and were confining ions for weeks.
Some unique fluid dynamics experiments with electrons were in progress, including the
discovery of “vortex crystals”. Positron plasmas in traps were being used to carry out
electron-positron beam plasma experiments and as well as experiments on the
interactions of positrons with atoms and molecules.
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Highly deformed asymmetric equilibria were under investigation at U. C.
Berkeley as well as a re-examination of Debye shielding. The Princeton Plasma Physics
Laboratory (PPPL) was exploring the possibility of a pressure standard based on
electron-neutral collisions in the Malmberg-Penning trap. They were also analyzing the
dynamics of intense beams in a periodic focusing field. NIST had their new ion trap in
operation. They were trapping 10° jons and looking for crystalline order with Bragg
scattering.

A remarkable example of cross-fertilizations came out of this meeting. An
outstanding problem on the path to a Penning trap ion clock was controlling the
rotational motion of the ion cloud. The solution, which was suggested during the panel
discussion, was UCSD’s rotating wall. A number of other new directions emerged at
this meeting. There was a Penning fusion experiment from Los Alamos presented, and
a dusty plasma experiment from U. Colorado. The Pacific Northwest Laboratory was
looking at space-charge effects in cyclotron mass spectrometry. A number of computer
simulations were in progress. There was an increased emphasis on One-Component
Plasma theory. A single-component plasma bibliography was included in the
proceedings.

The Princeton workshop is best characterized by the word diversity. There were
about 100 participants, half of which could be considered “young investigators”. There
was a much stronger representation from Japan and Europe than at previous workshops.

The first talk was on quantum computing with trapped ions. Quantum
computing is a rapidly growing research area at the interface of physics and computing.
The NIST group has been using laser-cooled trapped ions as an approach to this
problem.

The activity in antimatter has increased dramatically since the Berkeley and
Boulder workshops. There are now three groups (US, Europe and Japan) doing
antiproton or anti-hydrogen experiments. There were reports from Harvard, CERN and
the University of Tokyo on this work. Antihydrogen experiments require making
positron traps, anti-proton traps, neutral plasma traps and traps for antihydrogen. This
work involves particle physics, atomic physics and plasmas physics, and so is a kind of
physics triple point with vastly different length scales. The next few years should be an
exciting time for these experiments.

The positron plasma trap work has developed significantly, with ongoing work
at UCSD, and Harvard. The 0.5 megavolt energy spread from radio active sources can
be reduced to milliVolts by a combination of moderators and traps. New approaches to
bright positron trap beam sources are being explored. A number of potential
applications were discussed. NIST is exploring sympathetic cooling of positrons with
laser cooled ions. This approach has the possibility of reaching positron temperatures of
10 milliKelvin.

The work on 3D jon crystals and 2D “vortex crystals” has matured and
stimulated interest in the physics community.[4] Laser-cooled, phase-locked, real space
imaging of trapped ions at NIST has led to some remarkable results. In addition to the
cubic (bce) lattice,[S] they can create an ordered rotating disk of ions.[6] Such disks
offer a possible 2D alternative to quantum computing with linear arrays of trapped ions.
Lawrence Livermore National Laboratory reported on an experiment which
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demonstrated sympathetic laser cooling of Xe*** in a trap. These results open the

possibility of crystalline arrays of highly charged ions.

The UCSD ion experiment was designed to carry out detailed experiments on
collisional transport in plasmas using Laser Induced Fluorescence diagnostics. They
have set a new standard when it comes to experiments on the fundamental processes of
transport in plasmas. This work has been coupled with an active theory effort that has
provided guidance and explanations of this and other work.[7] They reported on cross-
magnetic-field heat transport, building on previous measurements of test particle
transport and viscous transport. In all these experiments they find that the transport is
dominated by long-range “guiding center” collisions. In the recent experiment the
thermal diffusivity is independent of magnetic field strength and plasma density and
more than 100 times greater than classical diffusivity.

A wide range of other trap experiments were reported at Princeton. Asymmetry-
induced transport continues to be an active area of research, with the challenge to
conventional wisdom coming from Occidental Coliege. The nonneutral experiment at
PPPL has shown that electron-neutral collisions affect the diocotron mode dynamics.
They find the mode amplitude sensitive to gas pressure down to 5 x 10" Torr.
Considerable theoretical and experimental effort (Cal Tech, UCSD) indicates the
coupling of the “rotating wall” to the plasma is through the Trivelpiece-Gould modes.
The U. C. Berkeley group did an interesting experiment on the autoresonant excitation
of diocotron waves and is using a photocathode trap to study vortex merger. Brigham
Young University is active in soliton-like nonlinear waves in traps and computer
simulation of nonneutral plasmas in traps. Experiments at the University of Colorado
are using an annular Malmberg-Penning trap to study transport when there are banana-
like particle drift orbits.

In addition to the Penning Fusion Experiment from Los Alamos National
Laboratory, an additional nonneutral plasma approach to fusion was presented at this
workshop. The University of Tokyo is exploring approaches to high beta plasmas using
an electron ring, in a concept similar to the Field Reversed Configuration. In accelerator
related work there was a PPPL talk on the propagation of intense nonneutral beams in
strong focusing fields. The halo formed by high current beams as they approach
equilibrium is similar to the halo formed in traps as equilibrium is approached.

At the Boulder workshop we invited scientist from related fields to give
presentations. For example, there was a talk from the Fermi National Accelerator
Laboratory on using plasma wave echoes to diagnose ion storage rings. At this meeting
there was a talk from the Jefferson Lab on a high average power free electron laser
(FEL). Average power is important in industrial applications concerned with the cost
per photon. Although high average power has been a strong motivation in the
development of free electron lasers, no one had broken the “kilowatt barrier” at any
wavelength until the Jefferson Lab results this year (1.7 kW at 5 microns). The
potential of the FEL to be tunable and to operate at any wavelength from the microwave
to x-rays is often limited by the mirrors, especially in the low-gain regime. There is a
great deal of research activity at present to design and construct a fourth generation light
source based on a single pass x-ray FEL. This FEL would operate in the exponential
gain regime where the dispersion relation has the same form as the two-stream
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instability.[8] Although mirrors may not be a problem, the electron beam gquality
requirements are a challenge.

The workshop Chair and PPPL staff did an outstanding job of organizing the
meeting, choosing an interesting setting and arranging for delightful weather.

Since the beginning of these workshops there has been a great deal of interest by
the plasma physics community and appreciation of the high quality of the work. There
have been 5 plenary session talks featuring nonneutral plasmas at the APS Plasma
Physics Division meetings since the 1988 Washington meeting. Two of these talks were
given by Maxwell prize recipients. This program was held up as a role model in the
National Research Council’s report on plasma science.[9]

The internal logic of the science drives much of the research, always working
towards simplicity to achieve predictability. We have chosen single-component
nonneutral plasmas in traps as a focus. The excellent confinement properties and the
fact that the plasma does not recombine to form a neutral gas means that the free energy
in the system can be minimized. In systems such as beams where the free energy is
dominant, predictability can be achieved by limiting the number of particles. However
technology requirements usually drive us in the opposite direction, towards more
particles and more free energy. For intense beams, tailoring of the beam distribution
function becomes critical for efficient transport. The enabling science that is coming out
of this work is pointing the way to new applications and extending the frontiers of
knowledge.

The rigidly rotating pure electron plasma in a Malmberg-Penning trap has
become the “hydrogen atom” of plasma physics. However, the diversity of the meeting
shows that nonneutral plasma physics is a truly multi-disciplinary field.
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SECTION 1

ANTIMATTER PLASMAS




Progress in Creating Low-energy
Positron Plasmas and Beams

C. M. Surko, S.J. Gilbert and R. G. Greaves

Physics Department, University of California
San Diego, La Jolla, CA 92093-0319

Abstract. A summary is presented of recent research to create positron plasmas in new
regimes of density, temperature, and particle number. The operation of a new, compact
positron accumulator is discussed. It has a number of improvements including enhanced
vacuum capabilities and an easily modified electrode structure. Using a 90 mCj *Na source
and neon moderator, a plasma of 3 x 108 positrons, with a diameter of 6 mm (FWHM) and a
density of 2 x 10" cm™, has been accumulated in 8 minutes. This is a factor of 50% more
positrons and an order of magnitude increase in plasma density over the performance of the
previous accumulator. Plans for a separate, high magnetic field (i.e., 5 Tesla), low-temperature
(< 10 Kelvin) trap are described. This trap is expected to permit the creation and long-term
storage of cryogenic plasmas with more than an order of magnitude larger particle number and
more than two orders of magnitude in plasma density. A method is described that uses
positron accumulation techniques to create a cold, bright positron beam (e.g., < 20 meV
FWHM), tunable from ~ 0.1 eV upward. Results are described of studies of positron scattering
from atoms and molecules in a new range of energies (e.g., < 1 eV) using this cold positron
beam. Other applications of trapped cold positron plasmas and beams are briefly discussed.

INTRODUCTION

Once the province of high-energy physics, antiparticles such as the antiproton and the
positron are now routinely used in a much wider range of applications. In the case of
positrons, these uses include the study of atomic and molecular physics, antihydrogen
formation, plasma physics, and the characterization of solids and solid surfaces [1, 2].
Further progress in many of these areas hinges on the ability to manipulate and cool
large collections of antiparticles, relying in large part on nonneutral plasma techniques.

One benchmark for handling antimatter is the lifetime of antiparticles in the presence
of matter. This time is of the order of a few nanoseconds for either positrons or
antiprotons in solids or gases at atmospheric pressure. This fact leads immediately to
the conclusion that, if antimatter is to be confined, accumulated and cooled, it must be
done in a vacuum environment. Over the past decade, we have developed methods to
accumulate large numbers of positrons [2,3], by exploiting nonneutral plasma

CP498, Non-Neutral Plasma Physics I1I, edited by John J. Bollinger, et al.
© 1999 American Institute of Physics 1-56396-913-0/99/$15.00
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techniques developed for electron plasmas [4]. Plasmas of greater than 10® particles
and confinement times of many minutes to hours are now routine [2].

Using the positron accumulator, we have recently developed a new technique to create
a state-of-the-art cold positron beam with an energy spread as small as 18 meV
(FWHM), tunable from 0.1 eV upwards [5,6]. Recently, we used this technique to
make the first measurements of the cross section for excitation of vibrational modes in
a molecule (the asymmetric stretch mode in CF4, Ae = 0.16 €V, measured for positron
energies from 0.2 to 1 eV) [7]. We also measured the differential cross section for
elastic scattering of positrons from atoms in the range of energies between 0.4 and 2
eV [7]. These experiments are expected to provide important new information, such as
understanding the role of virtual positronium states in positron interactions with matter
and the mechanisms by which positrons bind to atoms and molecules.

In this paper, we review recent progress in positron accumulation and the development
and use of the cold positron beam. We also discuss briefly other applications. For a
discussion of the application of cold positron beams to condensed matter and surface
physics and positron ionization mass spectrometry, the reader is referred to a
complementary paper elsewhere in this volume by [8].

BUFFER-GAS TRAPPING AND A NEW ACCUMULATOR

The principle of the buffer-gas trapping scheme is illustrated schematically in Fig. 1.
Inelastic collisions of positrons with N, molecules are used to trap positrons in a
specially designed Penning-Malmberg trap [2,3,9]. Positrons from the source are
slowed to a few electron Volts using a neon rare-gas "moderator," which consists of
solid neon condensed on a metal surface at 7 Kelvin. There is an applied magnetic
field of ~ 0.1 - 0.15 T in the z direction. The positrons are injected into the
accumulator at energies ~ 30 eV. The accumulator has three “stages,” I, II, and 111,
each with successively lower gas pressure and electrostatic potential. Following a
series of inelastic collisions (“A”, “B,” and “C” in Fig. 1), the positrons are trapped in
stage IIT where the pressure is lowest. The positrons cool to room temperature by
collisions with the N, in ~ 1 s. The positron lifetime in the third stage is = 40 s, limited
by annihilation on the Nj gas. Using this technique, we are able to accumulate > 10
e' in a few minutes from a 90 mCi “*Na source. The lifetime of the plasma with the
buffer gas removed ranges from tens of minutes to hours, depending upon the quality
of the vacuum.

The design of the original positron accumulator (circa 1985) is shown in the upper part
of Fig. 2. This design used a split magnet surrounding the accumulator electrodes to
achieve the required differential pumping. One focus of our work in the last two years
has been the completion of a new positron accumulator. A key feature of the new
accumulator is elimination of the separate pumping port for the second stage.
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FIGURE 1. Schematic diagram of the three-stage positron accumulator, showing the electrode
structure (above), which is used to create regions with different pressures of nitrogen buffer gas

by differential pumping. The electrostatic potential profile along the direction of the magnetic
field is also shown (below).

A new electrode structure with a much improved pressure profile was designed using a
state-of-the-art molecular flow simulation program, provided by Dr. Tim Bartel of
Sandia National Laboratory [10]. The calculated pressure profile along the magnetic
axis of the trap is shown in Fig. 3. The new design is a significant improvement in
terms of pressure differential and uniformity of pressure in stages II and III. The size
of the electrodes and magnet were reduced, thereby reducing complexity and cost.
The electrodes are made from gold-plated aluminum. They are designed for close fit
to the vacuum chamber, thereby facilitating alignment. The new vessel is a ultra-high
vacuum (UHV) system, bakeable to 130 0C, with a base pressure of < 107 torr.

Shown in Fig. 4 are the radial profiles of the positrons in the filling beam from the
source/moderator and in stages II and III of the trap. The diameter of the trapped
plasma in stage 111 is 6 mm (FWHM), as compared with 1.5 cm in the previous design.
Shown in Fig. 5(a) is the filling of the trap using a 10 Volt potential well in stage II1.
Note the super-linear filling rate as a function of time. This is evidence that we are
entering a regime in which the positron density is large enough that positrons are
trapped in stage III by scattering from positrons previously trapped in this stage. This
is consistent with estimates for Coulomb scattering during the time (~ 10 ms) that the
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FIGURE 2. Shown to scale are the designs of the original (above) and the new positron
accumulator (below). The new design provides a true UHV-quality vacuum and the ability to
easily modify the electrode structure.
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FIGURE 3. Calculated pressure profile as a function of distance along the magnetic axis in the
new positron accumulator. This design improves the maximum pressure differential between
each stage by an order of magnitude.




particles spend in stage II before becoming trapped in stage III. The maximum
positron number in Fig. 5(a) is limited by the space charge of the positrons in stage III.
Figure 5(b) shows data taken when the stage-III potential well was lowered from 10 to
15 Volts during filling. The maximum number trapped is just under 3 x 10%. Note that
the filling has not yet saturated for an 8 minute accumulation.

_bmm

FIGURE 4. Radial profiles of the positron filling beam (left); the plasma accumulated in stage
11 after a 0.5 ms fill (center); and the plasma in stage Il after a 10 s fill.
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FIGURE 5. Positron filling of the accumulator: (a) filling with a 10 Volt potential well in
stage III. The increase in filling rate appears to be due to scattering from positrons already in
stage II; (b) filling curve taken when the well depth is lowered from 10 to 15 V during the fill.

A UHV environment is required for many applications, such as antihydrogen
formation or studies of positron annihilation with test molecules. We have been able
to accomplish this in the new buffer-gas trap by rapidly pumping out the gas after
positron filling. As shown in Fig. 6, we are able to cycle stage III from an operating
pressure of 3 x 107 torr to <1 x 10” torr in a few seconds. This will also be useful in
shuttling the positrons from positron accumulator into a separate UHV storage and
experimentation trap (described below) through a fast pulsed valve.
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FIGURE 6. The pressure in the third stage of the new accumulator can be decreased by three
orders of magnitude in 10 seconds.

A HIGH-FIELD LOW-TEMPERATURE TRAP [11]

The buffer-gas trap is attractive for a range of applications because of the high
trapping efficiency. However, as mentioned above, many of these applications require
an ultra-high vacuum (UHV) environment, and a limitation of the technique is that the
positrons are initially in a background of nitrogen gas at a pressure > 107 torr. As
shown in Fig. 6, we can create a good vacuum in the trap rapidly by pumping out the
buffer gas (e.g., in ~ 10 s) and then conduct the specific experiment of interest.
However, this will interrupt the fill cycle. Thus, it is advantageous to combine the
ability to pump down the accumulator rapidly with the ability to “stack” positron
plasmas efficiently in a UHV environment. For this purpose, we are building an
isolated UHV stage into which the positrons from the accumulator can be shuttled
repetitively through a fast pulsed valve. In this way, we can isolate the efficient
buffer-gas trap from the UHV stage. The proposed apparatus is shown in Fig. 7.
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FIGURE 7. The UHYV storage trap in relation to the three-stage positron accumulator.




During positron accumulation, the UHV storage stage will be isolated from the
positron trap by a fast valve. Then the buffer-gas feed will be switched off and the trap
will be pumped rapidly to base pressure (i.e., ~1 x 107'? torr). The gate valve will
then be opened for the brief time ( <1 s) required to transfer the positrons to the
storage trap and the cycle repeated. Long confinement times and low plasma
temperatures will be achieved by applying a magnetic field of 5 T in this region. In
the 5 T field, the cyclotron radiation time is ~ 0.2 sec. We plan to cool the walls to 10
Kelvin, and so the plasma will cool radiatively to approximately the wall temperature.
The cold walls should provide excellent vacuum (e.g., pressures < 107" torr or better).
The trap will have a "rotating wall" electrode for control of plasma density and
confinement time [12]. Using this technique, we are likely to be able to achieve an
"infinite" confinement time, as has been done in the case of electron plasmas.

In Table I, the operation of the old positron accumulator is compared with that
expected for the new accumulator and UHV storage trap. We assume a six-
minute trapping cycle including one minute to pump out the buffer gas. Presently, the
positron loading rates are ~ 3 x10® per cycle or 3 x 10° per hour. With modest
improvements, we expect that it will be possible to increase the number of positrons by
a factor of as much as five, to > 1 x 10° per cycle. These improvements include an
increased source strength of 150 mCi and modest improvements in the source
geometry, magnetic field, and vacuum system. With these modifications, positron
accumulation rates of greater than 1 x 10" positrons per hour are expected. With this
filling rate and confinement times > 3 hours, the number of positrons accumulated will
be limited by the space charge of the plasma. For example, an hour's accumulation of
1 x 10" positrons in a plasma 1 mm in radius by 10 cm long corresponds to a plasma
density of > 1x 10" cm™ and a 1 kV space potential.

TABLE 1. Expected Performance of the UHV Storage Trap*

Parameter Old Positron New Accumulator
Accumulator and UHV Storage Trap
Source strength (mCi) 70 95
Positrons per cycle 2x10° ~3x10°
Cycles per hour n.a. 10
Positrons per hour na ~3x10°
Density {cm™) ~2x10%° >1x 10"
Base pressure (torr) 3x 1070 <1x 10" (cold)

* Based on current new-trap performance
“ One cycle in a 0.1 T magnetic field.
% One hour accumulation in a 5 T field.




A COLD POSITRON BEAM AND
APPLICATION TO ATOMIC PHYSICS

While sources of cold electron beams are common, this is not true for positrons.
Recently, we developed a method to create a state-of-the-art cold positron beam using
trapped positron plasmas [6,7]. This technique can be used to increase the brightness
of a positron or electron beam, and to create intense, short pulses of positrons with

parrow energy spreads. The beam energy can be tuned over a wide range of energies,
from ~ 0.1 eV to tens of electron Volts.
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FIGURE 8. Schematic diagram of the arrangement used to create a cold positron beam (above),
and the retarding-potential curve and energy distribution (below).

The experimental arrangement is illustrated in Fig. 8(a). Positrons are accumulated
and cooled in a Penning-Malmberg trap. Then the potential of the bottom of the trap is
raised, forcing the particles over a fixed-height potential barrier [energy E; in Fig.
8(a)], and this sets the energy of the beam. The spread in parallel energies of the beam
can be as low as, or lower than, the temperature of the plasma in the potential well.
However, care must be taken not to empty the trap too quickly, or space-charge
effects will increase the energy spread of the beam. Shown in Fig. 8(b) are data for the
energy resolution of a positron beam created using this technique. We have been able
to operate the beam in both continuous and pulsed modes; the latter was accomplished
by reducing the depth of the confining potential well in small steps.

Two topics that could not be addressed previously due to the lack of suitable low-

energy positron sources were study of the excitation of molecular vibrations by
positrons and measurement of low-energy differential scattering cross sections. We
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have now been able to do both [7]. The experiments were done exploiting the fact that
the cold positron beam is in a magnetic field. This is in contrast to contemporary
electron scattering experiments which are typically done using electrostatic beams.

The first measurements of the differential elastic scattering cross section for argon at 1
eV positron energy are shown in Fig. 9(a). Comparison with theoretical predictions of
McEachran, et al. and Duzba, et al. (solid and dotted curves, respectively, with no
fitted parameters) [13,14] indicate excellent agreement. In the future, we hope to
study elastic scattering in the important regime, ka ~ 1, where k is the momentum of
the positron and a is the scattering length (in atomic units). In this limit, both the sign
and magnitude of the s-wave scattering length, a, can be measured, and these
quantities provide important information about positron-atom and positron-molecule
bound states.
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FIGURE 9. (a) differential elastic scattering cross section of positrons scattered from argon at
1.0 eV; (b) the cross section (in atomic units) as a function of positron energy for excitation of
the asymmetric stretch mode in CF4, which corresponds to an energy of 0.16 eV. Also shown
is the cross section for electrons, taken from electron-swarm data. (See Ref. 7 for details.)

We have also used the cold beam to make the first measurement of the vibrational
excitation of a molecule (CF,) with positrons [7]. This was accomplished by locating
the scattering event in a magnetic field of 1000 Gauss and analyzing the spectrum of
paraliel energies of the scattered beam in a smaller magnetic field. In this case, the
(nominally parallel-energy) retarding-potential analyzer measures the fofal positron
energy and therefore measures the energy loss due to scattering. Data for CFy4 are
shown in Fig. 9(b). The asymmetric stretch mode that is excited has an energy of 0.16
eV. This is an absolute measurement and extends down to positron beam energies of
0.2 eV, which is possible only because of the excellent energy resolution of the cold
positron beam.

CONCLUDING REMARKS

We are continuing to advance the technology of accumulating and cooling positrons.
The new UHV trap should provide capabilities for a range of experiments, furnishing a
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reservoir of cold, dense positron plasma in a high-quality vacuum environment that
can be used as required for the particular experiment at hand. 1t should be well suited,
for example, as a positron source for antihydrogen production. These efforts have now
been extended to the creation of a state-of-the-art bright, pulsed positron beam, tunable
over a wide range in energies. The new UHV trap and cold walls should be well
suited for the creation of a new generation of positron beams [e.g., having an energy
spread as low as 1 meV (FWHM)].

Driven by advances in this technology, we continue to use these antimatter beams and
plasmas to study a range of scientific problems -- from the electron-beam positron-
plasma instability and modeling of astrophysical processes to antihydrogen formation
and the interaction of low energy positrons with atoms and molecules. In particular,

the cold positron beam appears to be able to address many new problems in these
areas.
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Abstract. A positron accumulator based on a modified Penning~Malmberg trap has been
constructed and undergone preliminary testing prior to being shipped to CERN in Geneva
where it will be a part of an experiment to synthesize low-energy antihydrogen. It uullses
nitrogen buffer gas to cool and trap a continuous beam of positrons emanating from a ?Na
radioactive source. A solid neon moderator slows the positrons from the source down to
eplthermal energies of a few eV before being injected into the trap. It is estimated that around
10 ® positrons can be trapped and cooled to ambient temperature within 5 minutes in this
scheme using a 10 mCi source.

INTRODUCTION

In order to produce low energy antihydrogen via recombination it is necessary to
have copious amounts of cold positrons available. To attain this a positron accumulator
based on the design of the Surko Group at the University of California San Diego (1-3)
has been constructed and undergone preliminary testing at University College London
(UCL) before being shipped to CERN in Geneva to be a part of the ATHENA
(AnTiHydrogEN Apparatus) experiment (4). The accumulator is an 1dea1 source of
positrons in this case as it is capable of supplying large quantities (>10% of positrons
in short well defined bursts, with a short cycle time, in the order of 5 minutes.

POSITRON MODERATION

The continuous beam of slow positrons injected into the accumulator is generated by
moderating B+ particles from a radioactive source and guiding them into the trapping

CP498, Non-Neutral Plasma Physics 1, edited by John J. Bollinger, et al.
© 1999 American Institute of Physics 1-56396-913-0/99/$15.00
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FIGURE 1. The source-moderator setup with the copper cone and the thermal shield.

region using a magnetic field. The radioactive source used in our set-up is an
encapsulated 9 mCi *Na B+-radioactive source from Dupont Pharma. The source is
mounted on an Elkonite rod fitted to a APD Displex 204SLB cryogenic coldhead
(Fig.1) capable of reaching 5.5 K. Elkonite is a Tungsten-Copper alloy that possesses a
high thermal conductivity while also providing excellent shielding for the gamma
radiation from the source. The rod itself is split into two sections separated by a
sapphire disk allowing a potential to be applied to the source/moderator. On top of the
source capsule there is a cone shaped copper extension. A gold plated copper thermal
radiation shield, held at 77 K, encloses the entire coldfinger.

The source end is pumped out by a magnetically levitated turbomolecular pump,
which is roughed out by a scroll pump. This maintains a base pressure of 1 x 10 =
mbar in the source end while also keeping the vacuum system oil free. This is
important since positrons have been shown to readily attach themselves to large
hydrocarbon molecules (5, 6) where they subsequently annihilate causing the storage
time of the positrons in the trap to be much reduced. Finally the pumps allow for
accurate control of the pressure in the source-end during deposition of the neon
moderator. This is accomplished by letting in neon gas at a pressure of 5 x 10 ~ mbar
for an hour or more depending on the desired thickness of the moderator.

The fast B+ particles from the source are emitted over a continuous range of energies
up to a cut-off energy of 545 keV. These are moderated using a layer of a condensed
noble gas, in this case neon, condensed onto the source cone arrangement. This type of
moderation can be far more efficient although more complex in operation, due to the
cooling requirements, than more conventional metal foil moderators. However, the
overall attainable efficiency of this type of moderator has been shown to depend on the
geometry of the source-moderator system. Thus an increase of a factor of 5 in the
moderation efficiencies have been reported for a conical geometry compared to a flat
geometry (7). This is the reason for the copper cone on top of the source.
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FIGURE 2. The trapping scheme showing the electrodes with the potentials and gas pressures in the
different parts of the trap.

Due to the method of final slow down and emission from rare gas solid moderators
the positrons emitted from them have a wider energy spread than that typical for
traditional metal moderators. This broader energy spectrum has the effect of a
subsequent reduction in the trapping efficiency of the final stage, where the trapping
electrode voltages are tuned to trap certain positron energies more efficiently. Thus a
reduction in the region of 25 % was noted by Greaves and Surko (8). However, this is
more than compensated for by the order of magnitude improvement in the initial
moderation step.

After moderation the positrons are transported through the source chamber by a
series of 3 "pancake" coils. These coils maintain a field of around 250 Gauss and
introduce a 2 cm kink in the positron path, raising the beamline to remove the source
from being in a direct line of sight with the remainder of the apparatus. Upon exiting
the source chamber the positrons are magnetically guided along a small diameter
transfer tube by a small (300 Gauss) solenoid before entering the trapping and
accumulation region. This transfer tube is necessary to ensure that the solid neon
moderator remains unaffected by the presence of the buffer gas in the accumulation
region.

TRAPPING

The second stage of the vacuum apparatus consists of a pair of pumping boxes
connected together by a smooth bore cylindrical chamber. The two pumping boxes are
each fitted with a 1200 I/s cryopump. These were chosen not only to obtain UHV
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conditions, but also for their pumping speed, necessary for the rapid removal of
nitrogen gas from the system. This is important both for minimising annihilation losses
and for keeping the accumulation cycle time down to a minimum. Again, as mentioned
earlier, the vacuum system is kept oil-free to avoid positrons being trapped at
hydrocarbon molecules. The base pressure of the main trapping region is 1 x 10 ™
mbar.

The smooth bore cylindrical chamber is situated within a 0.15 T magnet and contains
an electrode array. This consists of a set of eight separate gold-plated aluminium
electrodes with an appropriate potential applied will confine the positrons in the axial
direction after the initial trapping (Fig.2). The 0.15 T axial magnetic field supplies the
radial confinement and combined with the electric potentials this constitutes our
Penning-Malmberg trap.

The physical dimensions of the electrodes are designed to allow a pressure gradient
to be developed along their length. Nitrogen gas can be introduced midway along
electrode II and is pumped out at either end or through a set of three vents located at
the end of the same electrode. These vents can be manually adjusted by covering them
to various degrees with a sleeve actuated by a linear drive. Thus the pressure along the
array can be adjusted to obtain the optimal trapping of the positrons. Typically a
pressure in the region of 10 mbar is sufficient within electrode 11, falling to 107 mbar
within the final stages. A steadily falling trapping potential is also applied along the
array in order to accumulate the trapped positrons in the region of electrodes V and VL.

The positrons are trapped and cooled within the array via a buffer gas method. The
nitrogen gas pressure is tuned such that on average, a positron entering from the source
region will experience one inelastic collision with a nitrogen molecule whilst
traversing electrode II. Now confined and unable to escape the array a second collision
typically occurs within a millisecond further confining the positron to between
electrodes IIT and VI, typically a third collision after some 10ms will then finally
restrict the positron to electrodes V and VI

As stated earlier the electrode potentials are critical to the effective performance of
this trapping system. Positrons initially entering with some 31-35 eV of kinetic energy
pass into the array over the gate electrode (1) which has a potential of approximately 30
V applied. The second electrode is then set to 24 V, corresponding to the positron
having some 7-11 eV of kinetic energy. This range is chosen as it corresponds to the
so-called “trapping gap” (1), between the first available nitrogen electronic transition
at about 7 ¢V and 11 eV where positronium formation starts to become the dominant
process. Similar considerations are taken with the voltage along the length of the array
until the positron is eventually confined to the last stage. Here the gas pressure is much
lower, reducing annihilation losses yet cooling the positrons to room temperature in
less than 1 second by a mixture of excitation of nitrogen molecules and direct
momentum transfer. The accumulation cycle continues until an equilibrium state is
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FIGURE 3. The first results for slow positron energy spread obtained by applying a retarding potential
in front of a channeltron detector.

reached between further positron trapping and losses due to annihilations and plasma
expansion. At this point we hope to have trapped in excess of 10 positrons, which
have a lifetime of up to an hour after the buffer gas is pumped out. After the buffer gas
is switched off, the base pressure of this part of the vacuum system should be reached
in roughly 10 seconds due to the high pumping speed of the cryopumps.

PROGRESS

The positron accumulator is currently being reassembled at CERN following the
transfer from its initial UCL development site. Prior to this, good progress was being
made with the source end moderation where initial moderation/transport tests have
been performed.

A preliminary study of moderator growth was conducted using a channeltron and a
plastic scintillator detector in coincidence in order to ascertain the moderator
efficiencies for different moderator thicknesses etc. These detectors were placed at the
entrance to the main vacuum system. Using this method we have been able to detect
more than 6 X 10° e+ s, giving a moderator efficiency of 0.18 % based on a source
strength of 9 mCi at the time of the measurement. However, these were only the first
preliminary measurements and there were strong indications that higher positron yields
can be achieved. Once reconstructed further rigorous tests will be conducted to
ascertain and maximise both the moderator and transport efficiency. A preliminary
study of the energy spectrum of the slow positrons, has also been conducted (Fig.3),
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showing at FWHM of ~2.5 eV. Both this and the gross positron yield are of the same
order of magnitude as seen in similar experiments.

The trapping and accumulation region was also assembled and vacuum tested. An
attempt was then made to trap electrons in the system. During these test problems with
the radial magnetic field of the main magnet was discovered which led to trapping
times of only 10 s for electrons. These magnet problems have resulted in several
months delay while the magnet was returned to the supplier for repairs. These repairs
have now been completed and the magnet has been installed at CERN for further tests.

ACKNOWLEDGEMENTS

We would like to thank the EPSRC (grant number GR/L63266) for its support of this
project, the TMR-network EUROTRAPS (contract number ERBFMRXCT970144) for
its funding of a postdoctoral position. OIM would like to thank the Royal Society for
the providing a visiting fellowship. Finally we would also like to thank Cliff Surko at
the University of California San Diego, for many useful discussions and invaluable
technical assistance.

REFERENCES

1. Murphy, T.J. and Surko, C.M., Phys. Rev. A, 46, 5696-5709 (1992)

2. Greaves, R. G., Tinkle, M. D,, and Surko, C. M., Phys. Plasmas 1, 1439 (1994)

3. Surko, C. M., Greaves, R. G., and Charlton, M., Hyperfine Interactions 109, 181 (1997)

4. Holzscheiter, M. H. et al., Nucl. Phys. B 56A, 336-348 (1997)

5. Murphy, T. J. and Surko, C. M., Phys. Rev. Lett. 67, 2954-2957 (1991)

6. Surko, C. M., Passner, A., Leventhal, M., and Wysocki, F. J., Phys. Rev. Lett. 61, 1831-1834 (1988)
7. Khatri, R., Charlton, M., Sferlazzo, P., Lynn, K. G., Mills, A. P. Jr,, and Roellig, L. O., Appi. Phys.
Lett. 57, 2374- (1990)

8. Greaves, R. G. and Surko, C. M., Can. J. Phys. 74, 445-448 (1996)

18




Technological Applications of Trapped
Positrons

R. G. Greaves* and C. M. Surko!

* First Point Scientific, Inc., Agoura Hills CA 91301
¥ Physics Department, University of California, San Diego, La Jolla CA 92093

Abstract.

Low-energy positron beams are extensively employed in various areas of science
and technology such as surface analysis, atomic physics, plasma physics and mass
spectrometry. Recent advances in positron trapping and in manipulating nonneutral
plasmas present the opportunity for creating a new generation of bright, ultracold
positron beams with parameters that far exceed those currently available. Current
applications of low-energy positron beams are described, and the potential for the
development of advanced trap-based positron beams is discussed.

I INTRODUCTION

Over the past several decades, a variety of powerful analytical tools for materi-
als and surface analysis based on positron beams have been developed [1]. These
techniques are generally implemented using steady state and pulsed beams derived
from radioactive sources. Recent developments in nonneutral plasma and positron
trapping techniques have now created the opportunity for producing a new gen-
eration of positron beams based on the extraction of positrons accumulated in a
Penning trap. These unique techniques have never before been applied to beam
formation, and as described in this paper, they offer the potential to create bright,
ultracold, pulsed positron beams with parameters that far exceed current positron
beam technology.

This paper is organized as follows. In Sec. II, we describe low-energy positron
beams and their current uses for surface analysis and other applications. In Sec.
I1I, we briefly review a high-efficiency positron trapping technique and the forma-
tion of positron beams using traps. We also discuss important recent advances
in techniques to manipulate nonneutral plasmas and describe how they might be
applied to the creation of state-of-the-art cold, bright positron beams. Section IV
summarizes the paper.

CP498, Non-Neutral Plasma Physics 111, edited by John J. Bollinger, et al.
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II LOW-ENERGY POSITRON TECHNOLOGY

A Low-energy positron beams

Positrons beams are typically derived from radioactive sources and moderated to
low energies using single crystal or polycrystallinc metals or insulators [2]. Positron
beams are produced [rom these sources by accelerating, guiding, bunching and fo-
cusing the positrons using various combinations of electric and magnetic fields. The
resultant low-energy positron beams have been extensively applied to the analysis
of solids and surfaces [1], and they have also been employed for several decades in
basic atomic physics experiments [3].

B Brightness enhancement and microbeams

For many applications, positron beams with diameters ~ 1 micron or less (mi-
crobeams) are required. Such beams can be rastered across a sample under study
to obtain spatially-resolved information. When combined with variable energy
positron beams that can be implanted to varying depths, a three-dimensional scan
of the sample can be obtained. Since radioactive positron sources are typically sev-
eral mm in diameter, microbeams must be obtained by focusing using electrostatic
or magnetic lenses [2].

A fundamental limitation on focusing is imposed by Liouville’s theorem, which
states that the phase space volume occupied by a swarm of particles moving in a
conservative field cannot be reduced. For a particle beam, the phase space volume
is represented by the product @ = > AE, where d is the beam diameter and E| is
the perpendicular energy spread. The minimum diameter d of a focussed beam of
initial diameter dy accelerated to an energy F is given by d = dy/ay/E/E, where
o is the convergence angle. For positron beams, typical parameters are o ~ 0.2,
E; ~ 0.25 eV (from tungsten moderators) and E ~ 2.5 kV, giving d ~ dg/20.
Since dy ~ 3 mm for typical radioactive sources, the minimum size for a focussed
positron beam would be ~ 150um, which is too large for many applications.

This limitation has been partially overcome by the technique of remodecration
brightness enhancement [4]. Positrons are implanted into a moderator with a well-
defined energy. They rapidly thermalize in the moderator and a fraction of them
(~ 30%) are reemitted with a narrow energy spread, which allows them to be
further focused in subsequent stages of remoderation. Typically reductions by
about a factor of 10-20 in beam diameter are possible. This process is typically
repeated 3 or 4 times to obtain microbeams. Unfortunately the 70% loss in each
stage results in an overall reduction of about two orders of magnitude in beam
strength. As described in Sec. III B, positron traps have the potential for achicving
brightness enhancement using much more efficient processes.
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C Surface analysis using positron beams

An important application of positron beams is the wide variety of techniques
that have been developed for the analysis of solids and surfaces [1]. By varying
the energy of the incident positrons over the range from a few kV to >100 kV,
positrons can be used for depth profiling.

Positron reemission Microscopy (PRM)—Positrons implanted near the sur-
face of a solid can thermalize and be reemitted and analyzed to yield types of con-
trast that are not available with conventional scanning electron microscopy. The
technique can distinguish non-uniform film thickness, varying crystal orientations,
differences in bulk defect density, concentrations of absorbed molecules, and con-
taminant layers [5].

Positron annihilation induced Auger electron spectroscopy (PAES)—
This technique is analogous to electron induced Auger electron spectroscopy (AES),
except that the core hole, which leads to the ejection of the Auger electron, is cre-
ated by positron annihilation rather than electron impact [6]. For this technique,
positrons are injected at low energy into the surface to be analyzed. The ejected
electrons are analyzed in the usual way, but the measurement is substantially sim-
plified by the absence of background high-energy secondary electrons.

Low-Energy Positron Diffraction (LEPD)—A crystalline sample is bom-
barded with low-energy (0-300 eV) monoenergetic positrons. Backscattered
positrons diffract producing spots on a fluorescent screen. The positions of the
spots are a measure of the sample’s diffraction sites. This information can be used
to determine the crystal structure of a substrate or to analyze adsorbed layers.

Positron Induced Ion Desorption Spectroscopy (PIIDS)—Time-of-flight
is used to measure the mass spectrum of ions desorbed from surfaces by the injection
of positron pulses [7]. The ion desorption rate due to positron injection is much
larger than that for photodesorption.

Positron Annihilation Lifetime Spectroscopy (PALS)-—Positrons injected
into surfaces can be trapped and subsequently annihilate in vacancy-type defects.
Measurement of the positron lifetime yields information about the defects. This
technique has been extensively applied to the study of bulk properties of solids
[1]. Applications include characterizing the properties of semiconductors, such as
ion-implanted silicon to study, for example, stress voiding and electromigration,
and voids in polymers, which determine such properties as impact strength, gas
permeability and aging characteristics. Another important topic is the development
of low-k dielectrics in microelectronic fabrication.

Variable Energy Positron Lifetime Spectroscopy (VEPLS)—The power
of the PALS technique can be substantially enhanced using a variable energy beam
which enables positrons to be implanted to varying depths so that a depth profile of
void size and concentration can be obtained. When implemented using a scanning
microbeam, three-dimensional information can be obtained. The technique requires
pulse widths of the order of typical annihilation times in materials (~100 ps).
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Positron Annihilation Spectroscopy (PAS)—This technique measures the
Doppler-broadening of the 511 keV gamma-ray line resulting from the annihilation
of positrons implanted into solids. The required information is contained in the
gamma-ray lineshape. PAS can provide the same type of information about defects

as PALS and VEPLS.

D Positron Ionization Mass Spectrometry

Positron beams have the potential for use in a novel 1on source for mass spectrom-
etry. The formation of positive ions by positron annihilation was first demonstrated
by Passner et al. in a positron trap [8]. The experiment involved introducing sam-
ple gases into the trap during positron filling. The positive ions were trapped
by the same potentials as the positrons, and mass spectra were obtained using
a simple time-of-flight technique. They reported fragmentation patterns for hy-
drocarbons that werc similar to those obtained using electron impact ionization.
Subsequently, Hulett and coworkers investigated ionization by positronium forma-
tion [9], which occurs for positrons with energies above the positronium formation
threshold Ep, = E; — 6.8 eV, where E; is the ionization energy of the molecule.
They found that, for energies slightly above Ep;, very little [ragmentation of hydro-
carbon molecule occurred, but as the positron energy is increcased further, molecular
fragmentation increascd in a controlled manner.

This effect may be useful in the mass spectroscopic analysis of complex
biomolecules of interest in biotechnology and molecular medicine, such as pep-
tides. One possible configuration for implementing this technique using trap-based
positron beams consists of a positron trap connected to an ion trap as shown in
Fig. 1. By allowing positrons to pass through the ion trap, a recirculating positron
beam with well-defined (and potentially very narrow) energy spread can be cre-
ated in the ion trap. The positron energy in the ion trap can be tuned by varying
the depth of the well. Because the beam recirculates, the positrons make multiple
passes through the ion trap leading to efficient usc of the positrons. Since the ions
are confined in a Penning trap, precision mass spectroscopy can be implemented
using ion cyclotron resonance.

E Other uses of positron beams

Positron beams are also used for a variety of basic research studies. These include
atomic physics [3,10], plasma physics [11], and antihydrogen formation {12]. For
many of these applications, the trap-based beams will provide a powerful tool which
will provide new capabilities, such as the ability to explore important low-energy
regimes and identify narrow-energy resonances that are presently inaccessible to
experimental investigation.
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FIGURE 1. Possible configuration for implementing positron ionization mass spectrometry us-
ing a trap-based beam.

III POSITRON TRAPS AS BEAM SOURCES

Several research groups have been investigating the use of Penning traps for vari-
ous aspects of beam formation and handling. Penning traps are currently employed
to capture positron pulses from LINACS for pulse-stretching applications [13,14].
The capture and cooling of positrons from a radioactive source using laser-cooled
ions in a Penning trap is being investigated for the production of an ultra-cold
positron beam [15].

The trap-based beam sources described in this paper employ the high efficiency
buffer gas trapping technique that we have developed as described in an accompa-
nying paper in this volume [16]. That paper also describes how the trap can be
used as a high quality positron beam source by releasing the positrons in a con-
trolled manner. Beams with energy spreads as low as 18 meV have been created
and these beams have recently been applied to the study of positron-atom and
positron-molecule interactions in a low-energy regime that is not accessible by any
other technique [10].

A unique feature of positron traps is their ability to supply ultra-cold positrons.
Once trapped, the positrons cool to the ambient temperature by cyclotron cooling
or by collisions. Positrons as cold as 4.5 K have been produced in this way [17] and
techniques for producing even colder positrons by collisions with laser-cooled ions
are being developed [15]. For the positron beam demonstrated by Gilbert et al.,
the positrons were cooled to 300 K (0.025 eV) by collisions with room temperature
nitrogen at a pressure < 1 X 1078 torr The technique could be extended to liquid
nitrogen temperatures or even to liquid helium temperatures if hydrogen were used
as a buffer gas, because hydrogen is a molecular gas with appreciable vapor pressure
at low temperature.
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FIGURE 2. Axial potential profiles for creating pulsed beams. (a) Conventional dump and (b)
quadratic potential dump.

A Pulsed beam formation using traps

Pulsed positron beams are required for a variety of applications such as VEPLS
and time-of-flight PAES. Various techniques have been developed for producing
pulsed positron beams in conventional beamlines {1], but these arc often compli-
cated and inefficient. Trap-based beams sources have the potential for producing
pulsed positron beams in a simple and efficient manner. The simplest technique is
illustrated in Fig. 2(a). Positrons are released from the trap by reducing the depth
of the potential well in a series of steps. This technique produces pulse widths
that are determined by the transit time of positrons in the well. For example, for
room temperature positrons in a 1-cm long well, the pulse width would be ~100
ns, which is suitable for many applications.

Pulses of significantly shorter duration are required for VEPELS and TOF-PAES,
and these can be produced using the more sophisticated technique shown in Fig.
2(b). The positrons are dumped from the trap by applying a quadratic potential
profile to the entire positron flight path, leading to spatial and temporal focusing
at the target [2].

To first order, the pulse width is independent of the length of the positron cloud
and is given approximately by:

m\}/2 zoAE/?
pimn ()AL 1
- 7 1)

where e and m are the charge and mass of the positron, respectively, V4 is the
magnitude of the applied potential, AFE is the energy spread of the positrons, and
2o is the length of the length of the buncher. In practice, one might have V5 = 500V,
zo = 0.1 m and AE = 0.025 eV, yielding At ~ 150 ps, which would be suitable
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FIGURE 3. Geometry for plasma compression by application of a rotating electric field.

for lifetime spectroscopy. To achieve this performance in a conventional beamline
would require multiple stages of rf bunching.

B Brightness enhancement using traps

The capabilities of trap-based beam sources can be further enhanced by the use
of recent breakthroughs in trapping technology. The most significant of these is
development of a rotating electric field to compress nonneutral plasmas in traps.
This has recently been demonstrated by Anderegg et al. for an electron plasma
[18] and should be equally applicable to positrons. The maximum compression
ratio reported was 4.5 in radius, without loss of particles. This would correspond
to a brightness enhancement of 20 for a beam extracted from the plasma. Fur-
thermore, it is likely that the technique has not been developed to its limit, so
further improvements are possible. In addition, the rotating electric field can be
combined with the technique of extracting positrons from the center of the plasma,
as described below, to achieve even greater brightness enhancement.

The basic geometry for plasma compression and beam extraction is illustrated
in Fig. 3. A cylindrical plasma is contained in a Penning-Malmberg trap. An
azimuthally segmented electrode is located near one end of the plasma. A rotating
electric field is created by applying suitably phased signals to the ring segments.
Plasma compression is observed when the applied frequency coincides with one
of the Trivelpiece-Gould modes. Compression is accompanied by plasma heating,
so some cooling mechanism must be provided. In the experiments of Anderegg
et al., the cooling was provided by cyclotron radiation in the strong magnetic
field of a superconducting magnet, which provides a characteristic cooling time
7.(s) ~ 4/[B(T))?. For the 4 T field that they used, this gives a cooling time of
0.25 s. For many applications, it would be advantageous to replace the cyclotron
cooling with buffer gas cooling and use a low-field conventional magnet to reduce
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the overall cost of the system.

For nitrogen gas, the cooling rate has been measured at 0.55 s/uTorr [19], so that
at a typical operating pressure of 1 x 107® torr, the cooling time would be about
0.5 s, which is similar to the cyclotron cooling time of the electron compression
experiments. The annihilation time at this pressure is ~30 s. The plasma expansion
time at these pressures is ~ 130 s, which is the slowest characteristic timescale in
the system. The annihilation time therefore scts the time limit on which plasma
compression and extraction must be achieved. Certain other gascs are likely to
serve as even better cooling agents than nitrogen. For example, for CO, the cooling
rate at 107® torr is ~100 ms, while for CF, and SFe, it is even faster. Since
compression rates n/n of up to 0.6 s™! were reported by Anderegg et al. using
large-amplitude drives, it seems likely that significant compression can be achieved
using gas cooling.

A second process that can lead to brightness enhancement using traps arises
from the nature of the extraction process itself: becausc there is a radial potential
profile within the plasma, particles at the center of the plasma are ejected from
the trap before those at the edge. Thus, a beam extracted from a trap is narrower
than the plasma, at least for those particles that are ejected initially. The plasma
remaining in the trap will then have a hollow profile, which is unstable. The system
will come into a stable equilibrium by particle transport. This fundamental prop-
erty of trap-generated beams, in conjunction with plasma compression, provides a
potential method of extending the capabilities for brightness enhancement beyond
that obtainable by plasma compression alone.

The narrowest beam diameter, dy;,, that can be extracted from a plasma of
diameter d is determined by the positron space charge, V;, and the positron tem-
perature 1}, and is roughly given by dmin ~ d\/T,/V;s. Typical parameters might
be V; ~ 10 V, T, = 2 meV (for cryogenic positrons), yielding dpmin ~ d/70. 1If
this can be achieved in practice, and combined with a factor of 25 in compression
by the rotating electric field, a reduction of more than three orders of magnitude
in beam diameter might be achieved in a single stage of brightness enhancement
with an efficiency of up to 30%. Furthermore, these results can be achieved us-
ing high-efliciency neon moderators, which have too large an energy spread to be
used in conventional remoderation brightness enhancement systems. Even if the
actual performance is an order of magnitude below this value, the system would
still represent, the statc-of-the-art in positron beams. Furthermore, the analysis
presented above ignores the electrostatic focusing that could potentially produce
an additional factor of 10 if the positrons are extracted from the magnetic field.

C Proposed Developments
First Point Scientific, Inc. (FPSI) is currently addressing the issue of trap-based

beams by developing an advanced positron beam sourcc (APBS) based on the
accumulation of positrons from a radioactive source in a Penning trap {20]. The
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FIGURE 4. Layout of and the APBS showing the two stage trap, quadratic potential buncher,
and electrostatic extraction optics.

new source uses the trap to create short positron pulses, followed by extraction
from the magnetic field into an electrostatic beam line (Fig. 4). The APBS will
include the following features:

¢ Simplified low-cost, two-stage, design.

e Integral quadratic potential buncher capable of producing subnanosecond
positron pulses.

e Electrostatic optics for extracting the beam from the magnetic field.

FPSI is also considering the development of a complementary system in the form
of a positron trap beam source (PTBS) that will employ a conventional three-stage
design. While the PTBS will not be as economical as the APBS, it will include the
following additional advanced features:

e Rotating electric field for plasma compression permitting high efficiency
brightness enhancement.

o Controlled extraction of the positrons from the center of the plasma to further
increase the brightness enhancement.

e Cryogenic electrodes to produce ultra-cold positrons.

These two systems have the capability of providing state-of-the-art postron beams
for a variety of technological applications such as those described in Sec. I1C.
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IV.  SUMMARY

Current developments in the fields of nonneutral plasma science and positron
trapping technology have introduced exciting opportunities for the creation of a new
gencration of positron beams in the form of trap-based beam sources. These novel
beam sources are based on new techniques that have never before been applied to
beam production. They offer the possibility of producing state-of-the art positron
beams with performance parameters more than an order of magnitude better than
current systems. When incorporated into surface analysis tools used by industry
and research, they offer the potential for substantially improved performance at
lower cost. For scientific users, they offer new capabilities and the potential to
investigate regimes not presently accessible to experiments.

ACKNOWLEDGMENTS

The work at FPSI is supported by the National Science Foundation under SBIR
Phase I award number 9861217. At UCSD, the continued development of positron
trapping technology is supported by the Oflice of Naval Research and the research
in positron atomic physics by National Science Foundation.

REFERENCES

1. P.J. Schultz and K. G. Lynn, Rev. Mod. Phys. 60, 701 (1988).

2. A. P. Mills, Jr., Exp. Methods in Phys. Sci. 29A,, 39 (1995).

3. W. E. Kauppila and T. S. Stein, Adv. Atomic, Molec. Opt. Phys. 26, 1 (1990).
4. A. P. Mills Jr., Appl. Phys. 23, 189 (1980).

5. L. D. Hulett, Jr., Mat. Sci. Forum 175-178, 99 (1995).

6. A. Weiss et al., Phys. Rev. Lett. 61, 2245 (1988).

7. L. K. Kanazawa et al., Mcasurement Sci. Technol. 116, 129 (1997).

8. A. Passner et al., Phys. Rev. A 39, 3706 (1989).

9. L. D. Hulett, Jr. et al., Chem. Phys. Lett. 216, 236 (1993).
10. S. J. Gilbert, C. M. Surko, and R. G. Greaves, 82, 5032 Phys. Rev. Lett., (1999).
11. R. G. Greaves and C. M. Surko, Phys. Rev. Lett. 75, 3846 (1995).
12. R. G. Greaves and C. M. Surko, Phys. Plasmas 4, 1528 (1997).
13. F. Ebel et al., Nucl. Instrum. Methods A274, 1 (1989).
14. D. Segers et al., Nucl. Instrum. Methods A337, 246 (1994).

15. D.J. Wineland, C.S. Weimer, and J. J. Bollinger, Hyperfine Interact. 76, 115 (1993).

16. C. M. Surko, S. J. Gilbert, and R. G. Greaves, “Progress in creating low-encrgy
positron plasmas and beams”, This volume.

17. L. Haarsma, K. Abdullah, and G. Gabriclse, Phys. Rev. Lett. 75, 806 (1995).

18. F. Anderegg, E. M. Holmann, and C. F. Driscoll, Phys. Rev. Lett. 81, 4875 (1998).

19. T. J. Murphy and C. M. Surko, Phys. Rev. A 46, 5696 (1992).

20. R. G. Greaves, Advanced Positron Beam Source, NSF SBIR PHASE 1 Award Num-
ber 9861217, 1997.

28




Progress Toward Cold Antihydrogen

G. Gabrielse*, J. Estrada*, S. Peil*, T. Roach*, J.N. Tan* and
P. Yesley*

*Harvard University®
Cambridge, MA 02138

Abstract. The production and study of cold antihydrogen will require the manipu-
lation of dense and cold, single component plasmas of antiprotons and positrons. The
undertaking will build upon the experience of the nonneutral plasma. physics commu-
nity. Annihilations of the antimatter particles in the plasmas can be imaged, offering
unique diagnostic opportunities not available to this community when electrons and
protons are used. The techniques developed by our TRAP collaboration to capture
and cool antiprotons will certainly be used by our expanded ATRAP collaboration, and
by the competing ATHENA Collaboration, both working at the nearly completed AD
facility of CERN. We recently demonstrated a new techniques for accumulating cold
positrons directly into a cryogenic vacuum system. The closest we have come to low
energy antihydrogen so far is to confine cold positrons and cold antiprotons within the
same trap structure and vacuum container. Finally, we mention that stored electrons
have been cooled to 70 mK, the first time that elementary particles have been cooled
below 4 K. In such an apparatus it should be possible to study highly magnetized
plasmas of electrons or positrons at this new low temperature.

INTRODUCTION

The pursuit of cold antihydrogen began some time ago, long before a few an-
tihydrogen atoms traveling at nearly the speed of light [1]. Unlike the extremely
hot antihydrogen, antihydrogen that is cold enough to be confined in a magnetic
trap for highly accurate laser spectroscopy offers the possibility of comparisons of
antihydrogen and hydrogen at an interesting level of accuracy.

In my Erice lecture in 1986 [2], shortly after we had trapped antiprotons of the
first time [3], I mentioned our aspirations to make cold antihydrogen

“For me, the most attractive way ... would be to capture the antihy-
drogen in a neutral particle trap ... The objective would be to then study
the properties of a small number of {antihydrogen| atoms confined in the
neutral trap for a long time.”

1) sponsored by the ONR, NSF and AFOSR.

CP498, Non-Neutral Plasma Physics III, edited by John J. Bollinger, et al.
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I was inspired by the attempts to confine neutrons and the reccently successful
trapping of atoms for the first time [4].

Later we compared the different mechanisms by which cold antihydrogen might
be formed in a Penning trap [5]. We suggested that a “nested Penning trap”, which
we have since demonstrated [6], might provide the most useful environment. In
addition to radiative recombination and laser assisted radiative recombination, we
pointed out that the three body process whereby two positrons and one antiproton
interact, would likely play an important role if positrons and antiprotons are merged
directly. The instantaneous rate could be so high that this process could easily
dominate. For laser assisted recombination we suggested that using a CO, laser to
stimulate recombination to n = 10 or a diode laser to stimulate to n = 3 were most
attractive. We are pursuing the first option, but have found that the light from
a laser diode array cannot be focused sufficiently in the configurations that seem
most feasible. A titanium saphire laser now seems more attractive for stimulating
ton=3.

Subsequently, the accumulation of both cold antiprotons (7] and cold positrons
[8] in extremely high vacuum has become common, as has the trapping of hydrogen
atoms [9]. A substantial “Antiproton Decelerator” (AD) facility is now under
construction at CERN to carry forward experiments with low encrgy antiprotons,
and two large collaborations (ATRAP [10] and ATHENA [11]) have formed to
produce and study cold antihydrogen.

We developed the techniques for accumulating low energy antiprotons to allow
a precise comparison of the charge-to-mass ratios of the antiproton and proton,
and to allow the production and study of cold antihydrogen. A comparison of
q/m for the antiproton and proton to 9 parts in 10" was recently reported [12].
We will briefly review the steps required to accumulate cold antiprotons into an
extremely high cryogenic vacuum, demonstrated to be better than 5 x 10~!7 Torr
using antiprotons as a vacuum gauge [7].

We discuss in more detail a new method for accumulating cold positrons directly
into the extremely good cryogenic vacuum that is desirable for antihydrogen stor-
age. Highly magnetized positronium in a high Rydberg state is formed, and then
ionized within a Penning trap.

The production of cold antihydrogen requires that antiprotons and positrons be
allowed to interact. We have demonstrated that such an interaction can take place
within a nested Penning trap [6]. The closest approach to cold antihydrogen has
just been reported {13], though space will not permit much review of this crucial
step towards cold antihydrogen. Cold positrons and cold antiprotons were simul-
taneously confined. Finally, we mention the recently reported cooling of electrons
to 70 mK [14], the first demonstration of an apparatus capable of cooling a single
component plasma of elementary particles below 4 K.
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COLD ANTIPROTONS

The Low Energy Antiproton Ring (LEAR) at the CERN Laboratory in Geneva
was so named because the 6 MeV antiprotons it delivered to users were much lower
in energy than antiprotons available anywhere else in the world. Over a decade, our
TRAP collaboration developed the techniques to slow and cool these antiprotons
to an energy which is 10% times lower. Some of the antiprotons slow below 3
keV as they pass though a thin window [15], then are captured while within the
electrodes of a Penning trap by a sudden application of a 3 kV trapping potential
[3]. The trapped antiprotons, with energies up to 3 keV, are cooled via collisions
with 4 K electrons that are preloaded into the trap [16]. As many p as will fit,
limited by space charge to about 0.4 million, end up in a small inner, harmonic
well with of order 107 cooling electrons. We trap up to 0.6 million antiprotons
from a single LEAR pulse in our whole trap. The lighter electrons leave when the
trapping potential is reduced to zero for a short time, leaving the much heavier
antiprotons behind.

A NEW TECHNIQUE TO ACCUMULATE COLD
POSITRONS DIRECTLY WITHIN A CRYOGENIC
VACUUM

A cold plasma of positrons, confined in a region free of gas atoms, offers exciting
research opportunities. Losses could be precisely monitored, and even spatially
imaged, using the photons from et annihilation. A sufficiently dense plasma, in-
teracting with cold antiprotons, could lead to the production and precise laser
spectroscopy of cold antihydrogen. It is well established that a fraction of the en-
ergetic et from a radioactive source, if sent into a crystal, will emerge with eV
energies [17]. However, it is difficult to find an efficient physical mechanism which
can slow even these low energy e* rapidly enough to confine them in a nearly ideal
vacuum. The challenge is that a charged particle by itself cannot travel into a trap
and be captured. If it has enough energy to get into a region where conservative
forces would confine it, it has enough energy to get out. Even a slow, 1 meV et
travels 1 cm, the typical length of a trap, in only 0.5 us. The required physical
mechanism must remove sufficient kinetic energy on this time scale to allow the e*
to be trapped.

In this section we demonstrate a new physical mechanism for capturing cold
positrons in a nearly ideal vacuum [18]. We form strongly magnetized Rydberg
positronium (which may itself be useful for antihydrogen production) and ionize it
using a weak electric field within a Penning trap. The accumulation rate is orders
of magnitude higher than was attained by electronically damping positrons passing
through the trap [19,8]. Positrons are accumulated directly into an exceptionally
high vacuum, with the density of background gas atoms shown to be less than
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100/cm? in a similar apparatus [7). This is a pressure more than 10 orders of mag-
nitude lower than used to initially capture positrons via collisional damping [20],
an approach not yet demonstrated to be compatible with the cryogenic vacuum.
As a et accumulation method, the new approach is simple, efficient and robust.
An early version allowed simultaneous confinement of the ingredients of cold anti-
hydrogen in a cryogenic vacuum [13]. The new physical mechanism is also unusual
and extremely interesting in its own right, especially since only the formation of
low excited states of positronium (Ps) has been previously observed [17].

Fig. 1a shows the simplicity of the apparatus. A thin transmission moderator,
a 2 um tungsten crystal W(100), is added to an open access Penning trap [21]
at one end. A thick reflection moderator, a 2 mm tungsten crystal W(110), is
added at the other. Positrons from a radioactive source (2.5 mCi®*Na with a 2
mm diameter), traveling along field lines of a strong magnetic field (5.3 T), pass
through the transmission moderator to enter the trap. They accumulate in the
location shown.
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FIGURE 1. The electrodes of an open access Penning trap (a) are biased to produce an electric
potential (b) and field (c) along the central axis that confines et (solid curves) or ¢~ (dashed
curves). A 5.3 T magnetic field parallel to this symmectry axis guides fast positrons entering from
the left through the thin crystal and towards the thick crystal.

Both the thin transmission moderator crystal and the highly polished reflection
moderator crystal were treated using standard techniques [22]. They were heated
by an electron beam to 1200 C in 107® Torr of oxygen for 30 minutes and then held
at 2000 C for 3 minutes in a vacuum better than 10~7 Torr. After 5 repetitions the
moderators were slowly cooled to room temperature, exposed to 1 Torr of oxygen,
then placed into our apparatus. Both moderators were exposed to air for at least 3
days before the apparatus was evacuated. The transmission moderator is suspended
from four 70 pm tungsten wires to thermally isolate it.

The potentials and electric fields used to accumulate e (solid curves in Fig. 1b-
c) are produced by separately biasing the stack of coaxial, gold-plated, copper ring
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electrodes. Electrons are accumulated at the same location when the potential in
the trapping region is reversed in sign (dashed curves in Fig. 1b-c). The trap is
completely surrounded by an evacuated copper enclosure kept at 4.2 K via thermal
contact to liquid helium. The energetic e* from the source pass through a shutter
which either blocks them or allows them to enter the enclosure through a 10 um
Ti window. A 2 pA e current is measured on the transmission moderator.

A nondestructive measure of the number of accumulated et or e™, equally ef-
ficient for both species, comes from the Johnson noise spectrum across an RLC
circuit attached to the trap electrodes. For an empty trap, the measured frequency
spectrum is a Lorentzian centered at the circuit’s resonant frequency (e.g. central
peak in Fig. 2a). The harmonic oscillation of trapped particles along the magnetic
field direction shorts the Johnson noise at the resonant frequency of the particles.
The single peak splits into two, with a frequency spacing (e.g. Fig. 2a) that grows
with the number of trapped particles in a well understood way [23]. Fig. 2b shows
the accumulation of more than a million positrons.

The new physical mechanism for accumulating positrons takes place one positron
at a time; it does not depend upon the interaction of successive e* from the source.
The most direct evidence is that the number of accumulated e is proportional to
the incident flux of e* from the radioactive source. The radioactive source is pulled
away from the trap, away from the homogeneous center of the superconducting
solenoid, to vary this incident flux. The measured accumulation rate is a linear
function of the directly measured e* current on the reflection moderator.
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FIGURE 2. More than one million positrons, measured nondestructively using the Johnson
noise detection described in the text (), are accumulated in 17 hours (b).

The strong magnetic field is crucial to the new physical mechanism. It keeps the
“guiding center” [24] of any slowed e or e~ that emerges from the transmission
moderator on a magnetic field line as it passes through the trap. The tiny magnetic
moment associated with a small radius cyclotron orbit about the guiding center
has negligible effect on the trajectories. Such a moment is an adiabatic invariant.
Since the magnetic field is homogeneous, the magnetic moment and the cyclotron
energy to which it is proportional are essentially constant {except for radiation
damping) and uncoupled from the axial motion. The electric fields of the trap (or
from a partner particle of order 1 um away) will accelerate or decelerate a charged
particles along its magnetic field line. These electric fields are not strong enough
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allow E x B drift motion to move the particle appreciably off its one dimensional
axial field line path during one pass through the trap.

The new physical mechanism for capturing positrons arises when a moderated
positron leaves the transmission moderator followed by a secondary electron. (As
mentioned, an et cannot travel into the trap by itself and be captured.) The strong
magnetic field keeps the et and e~ on nearby field lines. Biasing the transmission
moderator to potential V; with respect to neighboring electrodes adds energy eV, to
one species and removes ¢V, from the other. Optimizing V, (Fig. 3a) thus reduces
the axial spacing between et and e~ and improves their axial velocity matching as
they approach the potential well of the trap. If their Coulomb attraction energy
exceeds their kinetic energy in the center-of-mass frame they are bound in a highly
magnetized state of Rydberg positronium. This positronium is polarized and then
ionized by the electric field within the trapping well if this field is strong enough.
If the kinetic energy of the et is sufficiently low it will be captured, while the e~
carries off the excess energy.
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FIGURE 3. (a) Accumulation rates, strikingly equal for positrons and clectrons, depend upon
the potential of the transmission moderator, and hence upon the electrie field at the moderator
surface. (b) Changes in positron accumulation rate when adsorbates on the transmission moder-
ator surfaces arc desorbed using laser pulses (100 ms of 818 nm with a 20% duty-cycle) with the
total energy indicated. The cycling is to 300 K then back to 4.2 K.

A distinct signature of this new physical mechanism is that the rates for accumu-
lating e* and e~ should be the same. Positrons are captured in the potential well
represented by the solid curve in Fig. 1b. Inverting only the well potential (dashed
curve in Fig. 1b) instead confines e~. The striking equality of the superimposed
accumulation rates in Figs. 3a, 4a and 4b for positrons (filled circles) and electrons
(open circles) provides the confirming evidence. The rates depend identically upon
the trap potentials which are not inverted — the transmission moderator poten-
tial V, (Fig. 3a), the reflection moderator potential V, (Fig. 4a), and the barrier
potential Vy, (Fig. 4b).

As a further test that positronium enters the trap, we raise the potential between
the transmission moderator and the trapping well by up to 6 V so that one of the
charged species by itself could not enter the trap well at all. The potential changes
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FIGURE 4. (a) Increasing the potential V; of the reflection moderator opens a second channel
for positron accumulation. (b) Increasing the potential barrier Vi, above the potential V, = 100
V potential of the reflection moderator, shuts off the positron accumulation due to the slow
positrons from the reflection moderator, and reveals an average kinetic energy of 1.5 eV, with a

2.5 eV width. Two channels to positronium formation and positron accumulation are represented
in (¢) and (d).

gradually enough as a function of position that the electric field does not increase
significantly. If the loading mechanism does not involve neutral positronium this
would essentially eliminate the accumulation. It does not.

The positronium that is ionized must be in a high Rydberg state, with positron
and electron well separated, insofar as the weak electric field of the Penning trap
(Fig. 1c) is sufficient to accomplish the ionization. Fig. 5 shows the accumulation
rate as a function of the magnitude of the maximum axial electric field within
the Penning trap. The electric field E, necessary to counter the attraction of the
et and e, spaced by r, is E, = 14(pm/r)?V/cm in the simplest linear model,
neglecting the kinetic energies. In this model, most of the positronium ionized thus
seems to have et and e spaced by 1 — 5 pum. As the electric field in the trap
well is increased further than shown in the figure, the accumulation rate begins to
drop slightly, presumably because the electric field starts to influence the tuning of
the relative velocity previously optimized by changing V, and more field ionization
takes place before the trapping well.

The formation of the ground state and lowest excited states of positronium at the
surface of crystal moderators is well known [25], and becomes more efficient when
the moderator is heated [26].” Stabilization of large-orbit positronium in a strong
magnetic field is also predicted [27). However, field-assisted formation of Rydberg
positronium from a cold surface has yet to be theoretically investigated.

The magnetized Rydberg positronium that we have been discussing is formed via
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two distinguishable channels that arc represented in Figs. 4c - 4d. The first channel
(Fig. 4c) is most direct. An energetic positron from the radioactive source slows
in the transmission moderator, from which it cmerges accompanied by a secondary
electron and is ionized as described above.

separation in um (simple model)
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0 10 20

maximum electric field magnitude in trap (V/cm)
FIGURE 5. Measured dependence of accumulation rate upon the maximum electric field mag-

nitude within the confines of the Penning trap (points), and deduced shape of the ionization
encrgy of the Rydberg positronium (dotted curve).

The second channel (Fig. 4d) is more efficient, contributing twice as many accu-
mulated e* as the first, but is less direct. Most incident positrons emerge from the
thin transmission moderator crystal with high enough energies to pass through the
trap and strike the thick reflection moderator crystal. A fraction 5, ~ 10~ of these
slow and diffuse near the entrance surface of this crystal, then emerge with encrgies
of a few eV [17]. The second channel opens, as indicated by a substantial increase
in the e™ and e~ accumulation rates in Fig. 4a, when a positive bias V, on the
reflection moderator gives these et sufficient energy to return to the transmission
moderator. Fig. 4b gives direct evidence of thesc low energy et for V, = 100 V.
Varying the height of a potential barrier V,, placed in their path shows them to
be moderated positrons, with an average kinetic energy of 1.5 eV and an energy
width of 2.5 eV. Upon entering the transmission moderator some fraction of the
backward traveling positrons are slowed in the transmission moderator and emerge
accompanicd by a secondary electron just as for the first channel. Above V, = 400
V the accumulation rate gradually decreases, presumably because an accelerated
et penetrates deeply enough into the transmission moderator to be less likely to
diffuse near the crystal surface and emerge with a secondary electron.

The formation rate for Rydberg positronium depends upon the e* and e~ work
functions, which are modified by gas adsorbed on the surface of the transmission
moderator. We gradually remove this layer with 100 ms pulses of up to 4 W of 818
nm radiation (with a 20% duty cycle) from a laser diode, while the trap remained
at 4.2 K. Fig. 3b shows the resulting decreasc in the et accumulation rate. The
peak in the accumulation rate also shifts to a value of the transmission moderator
potential V, that is higher by 2 V. The adsorbed gas layer and higher accumulation
rate are restored when the trap and its vacuum container are simply warmed to 300
K and then cooled back to 4.2 K. The restored accumulation rate is slightly larger




than initially observed. We observed similar changes in et efficiency when we used
antiprotons and electron-beam heating to remove absorbed gas [13]. Nonetheless,
over months of loading and repeated cycling of the apparatus between 300 K and 4
K, the peak loading rate remains stable as long as adsorbed gas is not deliberately
removed from the surface of the transmission moderator crystal.

The peak loading rate we observed was 4 x 10%e* /hr/mCi. This corresponds to
2 x 1078 trapped e per high energy e* incident on the transmission moderator.
(This would be 0.2% of the number of slowed et leaving the moderators if 7, =
n, = 1072 of the et from the source emerge after being thermalized.) Improved
rates for the production of Rydberg positronium and the accumulation of cold
et seem possible. The most straightforward increase would come with a larger
radioactive source. For example, a 150 mCi ?>Na source (the largest available
commercially in a compatible size) should increase the rates by a factor of 60, so
that a million e* should be accumulated in 12 minutes. Increasing the efficiency 7,
for slowed positrons ejected from the reflection moderator, by covering the reflection
moderator with neon [28], could improve the accumulation rate by more than an
order of magnitude, provided that an insulating layer of neon would not be allowed
on the trap electrodes.

In conclusion, highly magnetized Rydberg positronium is formed when fast
positrons from a radioactive source slow and pick up electrons from tungsten crys-
tals in the presence of a strong magnetic field. With the application of appropriate
electric fields, the Rydberg positronium is ionized. Either the positrons or the
electrons can be accumulated by choosing the sign of the potential well. Equal
accumulation rates for positrons and electrons give evidence that their source is
positronium, and only Rydberg states could be ionized with the weak electric field
that is used. The dependence of the accumulation rates upon the applied electric
fields are presented to stimulate the development of detailed production models.
As a positron accumulation method, the new technique is efficient, robust and
compatible with a cryogenic vacuum.

Many applications are envisioned. For antihydrogen production, the Rydberg
positronium has a large cross-section [29] in collisions with antiprotons to form an-
tihydrogen directly. Cold plasmas of pure positrons could be mixed with pure an-
tiprotons to produce antihydrogen that is cold enough to be magnetically confined
for precise spectroscopy measurements. The pure positron plasma in a cryogenic
vacuum could also be used as a cooling fluid for highly stripped ions [8], just as elec-
trons are used to cool energetic antiprotons [16], without fear of charge-exchange.
Finally, a cold single-component plasma of positrons offers the unusual possibility
to image losses spatially with a suitable annihilation detector.

CLOSER TO ANTIHYDROGEN THAN EVER BEFORE

Though spéce does not permit a review of the recently reported success we had
in simultaneously confining the ingredients of cold antihydrogen [13], it seems like
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a shame to pass over this significant step towards cold antihydrogen entirely. Fig. 6
shows thc apparatus and the electrical signals from the simultaneously trapped
antiprotons and positrons.
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FIGURE 6. (a) Electrode cross sections and the initial position of the simultaneously trapped
P and e*. (b) Trap potential on the symmetry axis. Fits (solid curves) to the electrical signals
from simultaneously trapped et (c) and 5 (d) establish the number of trapped particles.

EVEN COLDER PLASMAS

For some years single component plasmas of elementary particles have been stud-
ied at temperatures down to 4 K. We have now managed to cool stored electrons
down to 70 mK and below. So far, only onc trapped electron (at a time) has been
studied in detail at this low temperature, though there is no reason to expect any
difficulties with larger numbers.

Quantum jumps between Fock states of a one-electron oscillator reveal the quan-
tum limit of a cyclotron [14]. With a surrounding cavity inhibiting synchrotron
radiation 140-fold, the jumps show a 13 s Fock state lifetime, and a cyclotron in
thermal equilibrium with 1.6 to 4.2 K blackbody photons. These disappear by
80 mK, a temperature 50 times lower than previously achieved with an isolated
elementary particle. The cyclotron stays in its ground state until a resonant pho-
ton is injected. A quantum cyclotron offers a new route to measuring the electron
magnetic moment and the fine structure constant.
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The ATHENA Antihydrogen Experiment

. . *
K.S. Fine (for the ATHENA Collaboration )
CERN-CH, Division EP, 1211 Geneva 23, Switzerland

Abstract. The ATHENA experiment is being built at CERN to produce and trap neutral
antihydrogen. Here we give an overvicw of the plans to produce antihydrogen. The experiment
must 1) trap the antiprotons produced by thc CERN accelerators, 2) produce and trap positrons,
3) combine the two charge species into antihydrogen, and finally 4) detect the presence of the
antihydrogen. In this paper we discuss how we intend to accomplish each of these steps.

INTRODUCTION

The ATHENA experiment is being constructed at CERN with the goal of producing
neutral antihydrogen (H) for precise laser spectroscopy. A second experiment at
CERN with a similar goal is being built by the ATRAP collaboration (1). The most
important scientific goals are to test CPT invariance and to measure the gravitational
charge of antimatter (2). This paper focuses on the plans for the production of
antihydrogen.

Producing H involves several steps: 1) trap and cool P’s made by the CERN

accelerators, 2) produce and trap an e* plasma and 3) combine the two to form H.
Finally, the presence of H must be detected. Figure 1 shows an overview of the
ATHENA apparatus, designed to accomplish these goals. Antiprotons delivered by the
Antiproton Decelerator (AD) arrive from the left. They enter into a superconducting
magnet with a 3 Tesla field, where they are trapped in a Malmberg-Penning trap with a
hyperbolic trap in the center. There they are cooled by collisions with a cold electron
cloud. The electrons are cooled by emitting cyclotron radiation to the environment.

The positrons arrive from the right, generated by a **Na source. They are
accumulated in a positron accumulator over a period of several minutes, then
transferred to the superconducting magnet where they are also cooled by cyclotron
radiation. At this point the electrons can be ejected, and then the antiprotons brought

*
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FIGURE 1: Overview of the ATHENA apparatus. Drawing is to scale; dimensions are shown on the
plot of axial magnetic field at the bottom.

into contact with the positrons, where they will recombine by either two-body or three-
body processes. An imaging detector surrounding the recombination trap detects the
annihilations of the antihydrogen. In the following sections we will elaborate on these
steps.

PRODUCTION OF ANTIPROTONS IN THE AD

Antiprotons are produced and accumulated in the Antiproton Decelerator (AD) at
CERN. The antiprotons are created by colliding a 26 GeV/c proton beam with an
iridium target, and then separated from other particles using a mass spectrometer. The
antiprotons are then steered into the AD storage ring where they are decelerated and
cooled by stochastic and electron cooling. The AD ring is capable of delivering one
bunch of about 10’ P’s at a kinetic energy of 5 MeV every 2 minutes.

The AD ring is approximately 60 meters in diameter, and the antiproton
experiments are installed inside this ring. There are three experiments: ASACUSA,
designed to study various aspects of antiproton physics, including the spectroscopy of
antiprotonic helium, the ATRAP experiment, which has already been mentioned, and
the ATHENA experiment discussed in this paper. Each p bunch will be delivered to
one experiment at a time.
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Commissioning of the AD ring is currently foreseen to finish in November 1999,
Since the CERN accelerator complex is closed during the months from December to
April, the beginning of physics in the AD is expected to be in May 2000.

TRAPPING OF ANTIPROTONS

Figure 2 shows the scheme to be used to degrade and capture the antiprotons. The
P bunch from the AD beam line is shown arriving from the left, where the bunch exits

the AD vacuum system through a thin titanium foil. The p’s make a short journey in

air, where a silicon counter will be placed. The counter will be useful to trigger the
voltages that trap the p’s. The p beam then enters the ATHENA vacuum system

through another thin titanium foil. The beam next encounters a segmented silicon
detector, as shown in Fig. 2. The segments will give information about the centering
and radial profile of the bunch. Note that the vacuum system shown on the right side of
Fig. 2 is the bore of the 3 Tesla superconducting magnet. As the bunch enters into the
bore and traverses the second silicon detector, it is compressed by the 3 Tesla magnetic
field.

Inside the bore of the superconducting magnet is a second vacuum system, called
the “cold nose”. This design was driven by the need to have two temperatures
available: the particle traps should be at LHe temperature (4 K) to cool the particles as
much as possible, while the H detector electronics operates better at LN, temperature
(77 K). The magnet bore will be connected to the magnet LN, reservoir, and the
detector will be thermally anchored to the bore. The cold nose will be inside the

Vacuum Windows Degrader
12 pm Ti 120 pm Al

0.5x 107 P [m=d

0-500 keV

EERE— Sh—
0-15 keV

1012 Torr

Entrance Counter ) Beam Monitor
6 pm Silicon 50 pm Silicon

FIGURE 2: Path of the antiproton bunch into the ATHENA apparatus. The AD vacuum system is on
the left, on the right is the bore of the ATHENA superconducting magnet at 10 Torr. Inside this bore is
another vacuum system at 10" Torr. A very low pressure is necessary to reduce annihilation of the
antiparticles by neutral atoms.
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FIGURE 3: Antiproton bunch (black) is captured by quickly ramping a -15 kV potential after the P

bunch enters the trap. Electron cloud (grey) is cooled by radiating cyclotron radiation, and the cold
electrons cool the antiprotons by collisions.

detector, and will be cooled by a separate external cryostat. The cold nose will contain
the particle traps.

Finally, the P bunch will traverse an aluminum degrader. The thickness has been
chosen so that about haif of the p’s will annihilate, and those that emerge will be
spread over the energy range from 0 to 500 keV. Those in the range from O to 15 keV
will be trapped downstream from the degrader using the technique illustrated in Fig. 3.
A cylindrical Malmberg-Penning trap will have the far end electrode at -15 kV, and
will quickly ramp (~100 ns) the other end electrode to -15 kV after the p bunch enters,
trapping all p’s in this energy range. This will trap between 10* to 10° p’s. The P
cloud will then be cooled by collisions with an electron plasma trapped in a hyperbolic
region of the larger trap. The electrons are cooled by cyclotron radiation (1~0.4 sec),
unlike the P’s which are too massive for significant radiative cooling. Once the
particles are cooled, the end potentials can be reduced to voltages below 100 volts, and
the electron cloud can be ejected by quickly lowering and raising an end electrode. The
light electrons will be ejected before the heavier P’s can escape the trap.

PRODUCTION AND ACCUMULATION OF POSITRONS

A separate paper in this volume describes the positron accumulation scheme (3),
originally developed by Cliff Surko’s group at UC San Diego (4). We use the
radioactive decay of ?Na as an €* source along with a neon moderator to reduce the
energy of the positrons. The positrons then fall into a Malmberg-Penning trap by
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Gate Valve

FIGURE 4: Positron transfer section. During the transfer, the radial size of the positron cloud is
reduced due to the magnetic field of the transfer magnet, while the neutral buffer gas from the
accumulation section is impeded by the small vacuum conductance of the tube.

losing energy due to collisions with a background N, buffer gas. The trap is within a
normally conducting, 0.15 Tesla magnet.

Once sufficient numbers of positrons are accumulated (more than 10° after ~5
minutes), the pressure is reduced, and the positrons transferred to the same
superconducting magnet where the antiprotons are stored. The advantage of this
technique is that large numbers of positrons can be quickly accumulated. The
disadvantage is that the buffer gas can leak into the antiproton trap and raise the
pressure, leading to a limited lifetime of the antiprotons due to annihilation. In order to
reduce the leakage of the buffer gas into the antiproton trap, a differential vacuum
transfer section is being constructed.

The design of this transfer section is illustrated in Fig. 4. A vacuum gate valve will
normally separate the positron accumulator from the recombination and antiproton
traps, which are contained in the superconducting magnet. During the positron transfer,
the gate valve is opened for a few seconds. The positrons are accelerated into the
transfer section. There they are squeezed by the field of the transfer magnet to a
diameter of less than 2 cm, allowing them to pass through a small electrode that will
act as a “choke” for the buffer gas. This setup will maintain a pressure difference of at
least a factor of 100 between the two regions.

RECOMBINATION

Once both the antiprotons and the positrons are inside the superconducting magnet
and are cold, the two charge clouds must be overlapped for recombination to occur.
Several schemes have been discussed to accomplish this in Malmberg-Penning traps

(5).




When the two charge species are in contact, they can recombine by two-body or
three body collisions (6). (There are also ideas to induce recombination with resonant
laser stimulation (7)). The recombination rate scales with positron temperature T and
density n as

2—body : e +p=>H+hv R~n T‘l/2

3-body: e'+e'+p=>H+e R ~n2 T_9/2.

In both cases a low positron temperature and a high positron density results in a higher
recombination rate. It is certain to be advantageous for the positrons to be as cold and
dense as possible. This means that the best recombination rates are achieved when the

positrons are in the plasma regime, i.e. when the Debye length A , = ‘/T/ 47 ne®
becomes smaller than the size of the positron cloud (8).

The plasma temperature may be significantly higher than the electrode wall
temperature (9), contrary to common belief. The electrostatic energy of a nonneutral
plasma is large compared to its thermal energy, and any slow expansion of the plasma
liberates electrostatic energy, which will be converted to thermal energy. Assuming
collisions with neutrals can be neglected, the only cooling mechanism is cyclotron
radiation. If the plasma has a radial expansion time given by T, a cyclotron cooling
time given by 1. and the electric potential at the center of the plasma is ¢p, then in
equilibrium

e m P 0,

dt T Te
where N is the number of charges in the trap. Therefore, the plasma temperature will
have a lower limit of kT/e~(t,/t,,)$,. At the 3 Tesla field planned for ATHENA,

1.~0.4 seconds. If the potential of the positron cloud is 10 Volts, this requires
expansion times >10* seconds to achieve temperatures as low as 4 K (0.0004 eV).

ANTIHYDROGEN DETECTOR

Once antihydrogen is formed in the trap, it will no longer be contained by the
electric and magnetic fields, and will move in a straight line out of the system. Once it
collides with the electrode wall or with a background gas atom, both the positron and
the antiproton will annihilate almost simultaneously, within about 1 ns of each other.

The antihydrogen detector will surround the vacuum system of the recombination
trap. The detector detects the products of both the antiproton and the positron
annihilations. The annihilation of antihydrogen is distinguished from that of unbound
antiprotons and positrons by the fact that with antihydrogen both the antiproton and the
positron annihilate at the same point in time and space.
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FIGURE 5: Cross section of the antihydrogen detector and recombination trap. The charged particles
are in the center; the inner black ring represents the electrode where annihilation occurs. The 511 keV
gammas are detected by the Csl crystals and the pions by the silicon strip detectors. Drawing is to scale.

The annihilation of an antiproton on a nucleon produces on average 3 to 4 charged
pions in the 50 to 900 MeV energy range. Si strip detectors, arranged in two layers
around the recombination trap, measure two points of the trajectories. Each layer of
strip detectors consists of 16 detector modules arranged around the circumference,
with each module having 128 strips on one side (r-@) and 128 pads (z) on the other
side. The vertex of the antiproton annihilation is determined by the intersection of the
lines extrapolated from the measured points on the strip detectors. The error on the
vertex position is largely dominated by the unknown curvature of the pion tracks,
leading to an average extrapolation error of about 1 mm.

The annihilation of a positron produces two 511 keV back-to-back gamma rays.
They are detected in an array of 16 (r) x 12 () CsI crystals with dimensions 17 (r) x
17.5 (@) x 13 (z) mm, surrounding the Si strip detectors. If two crystals register energy
deposits compatible with 511 keV gamma rays within about 1 microsecond of an
antiproton annihilation, it is assumed that they originate from within a straight line
between the two crystals. For antihydrogen annihilation, it is then required that the

vertex position determined by charged pions lies within the errors in determining this
line.
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The figure of merit of the detector is the ability to pinpoint the vertex of these
annihilations in space and time. This detector will locate the vertex of the pions to oz ~
5 mm, and Grq ~ 1 mm. The vertex of the gamma rays is located to a tube of radius ot
~ 7 mm. The time resolution of the device will be about 1 pSec.

Many details have been left out of this simplified description. The evidence for the
existence of H will be statistical, since there are several background sources. The
main source of the 511 keV background is positrons annihilating in the material

outside the detector. These positrons stem from pair creation by 7° decay gamma rays,
which are emitted during the antiproton-nucleon annihilation.
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Abstract. Ultra slow mono-energetic antiproton beams are under preparation combining novel
techniques to decelerate antiprotons with an RFQD (Radio Frequency Quadrupole Decelerator), to
trap, cool, and compress in an electromagnetic trap, and finally to extract as an ultra slow mono-
energetic beam. This unique beam will make it possible to study the ionization processes around
adiabatic energy regions, channeling, stopping power, antiprotonic atom formation processes under
single collision conditions, to prepare metastable antiprotonic atoms such as pp, pHe’,

pHe'*, pLi* in vacuum, and to make high precision laser spectroscopy of them. This project
named ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) is expected to
open a new physics regime in antimatter science under well controlled conditions.

INTRODUCTION

Before the termination of LEAR (Low Energy Antiproton Ring) at CERN in
1996, atomic collisions particularly charge asymmetry effects and high resolution
laser spectroscopy of antiprotonic helium ( pHe") were intensively studied.
Recently, the second generation facility, AD (Antiproton Decelerator), devoted to
atomic physics experiments had been approved at CERN, and is expected to start its
operation before the end of 1999. Until now, three proposals have been approved,
two of which are on the production and spectroscopy of antihydrogen (ATENA and
ATRAP collaboration) aiming to investigate a violation of CPT. The third one is on
atomic collisions and spectroscopy of antiprotonic atoms (ASACUSA collaboration),
which is to be discussed in the present report (1).

When an antiproton approaches an atom, an outermost electron is repelled by the
antiproton, which causes the binding energy of the outermost electron to be
shallower. In such a case, even a very tiny "kick" is strong enough to liberate the
electron from the atom. This is expected to be a universal scenario of ionization at
the initial stage induced by slow negatively charged heavy particles, which is
essentially different from those by positively charged heavy particles. It is noted
however that such a scenario has never been tested simply because no such beam has
been available. Until now, ionization processes with antiprotons were studied as
low as a few tens keV (2). Theoretical predictions get conflicting with each other
below this energy range, i.e., it is crucial to prepare antiproton beams with lower
energies, which is the important subject of ASACUSA project beyond the foregoing
projects in the LEAR era.

When the kinetic energy of the antiproton is less than the binding energy of the
outermost electron, the particle is bound to the atom after the release of the electron,
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which is a naive picture of an "exotic atom" formation process. As is discussed
later, the binding energy of the particle just after the formation is comparable to or
even less than the binding energy of the released electron, i.e., the particle is in a high
Rydberg state. Furthermore, a considerable fraction of them are in a high angular
momentum state, which is expected to be metastable with cascading lifetimes of the
order of psec or even longer, and a laser spectroscopy with a precision as high as ppb
becomes in principle possible. However, in the real world, it is well-known that
energetic hadrons with negative charge annihilate immediately in dense media
through thermalization and antiprotonic atom formation. Inter- and Intra-Auger
transitions and Stark mixing induced by neighboring atoms have been considered to
be responsible to accelerate cascading processes and to shorten the lifetime.
Because of this “common sense”, it was a big surprise when metastable particle-He
complexes were found and identified (3, 4). Particularly, in the case of antiproton, a
considerable fraction of pHe' has been found to survive more than ~usec even in
liquid He. This extreme metastability has allowed to determine the binding
energies of pHe* with ppm or even better precision, which provides the charge ratio
and mass ratio between protons and antiprotons with an accuracy an order of
magnitude better than before (5). Extensions of the pHe" spectroscopy to higher
resolution including a laser-microwave double resonance to measure hyperfine
structure is the important subject of the ASACUSA project.

There have been vast progresses in catching and cooling antiprotons in an
electromagnetic trap, which opens a way to develop ultra slow monoenergetic
antiproton beams (6). Once developed, various antiprotonic atoms can be prepared in
vacuum keeping their intrinsic metastability, which enables for the first time to make
a high precision laser spectroscopy of various antiprotonic atoms such as protonium
( pp), the simplest pure hadronic atom, pHe™, pLi*, etc. (1) (7). Such an ultra
slow antiproton beam will be prepared by the combination of AD (antiproton
decelerator), RFQD (radio frequency quadrupole decelerator), and a Multi-Ring
electrode trap (MRT) (8). By this way, the number of ultra slow antiprotons
available will at least be two orders of magnitudes larger than ever achieved.

In the following sections, several research plans are discussed together with the
procedure to prepare ultra slow antiprotons, which includes in itself various
interesting research fields like accelerator physics, non-neutral antimatter plasma

physics, etc.
PRODUCTION OF ULTRA SLOW ANTIPROTONS

‘
Antiprotons had been discovered in 1955 for several GeV protons hitting a target (9),
the reaction of which is given by

p+p—> p+p+p+p. 1)

Considering that the inner product of 4 dimensional momentum is invariant with
respect to Lorentz transformation and four particles in the final states are all at rest in
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the center of mass frame (eq.1), the threshold energy of incident protons to produce
antiprotons is evaluated to be about 5.6GeV in the target frame, i.e., the antiprotons
so produced inevitably possess kinetic energies at least several hundreds MeV. In
old days, the only way to get To East Hall
low energy antiprotons was to
use a degrader foil followed by
a momentum selector, which
yield only weak and low
quality antiprotons
contaminated by 2 orders of
magnitudes stronger pions and
muons of the same momentum.
In this respect, it was really a
revolution when LEAR started
to supply high intensity and
high quality ~SMeV p, which
reduces the kinetic energy by

three digits. What is going to = | ] [ I [
be discussed here is to reduce Ip prod [AD RFQD MRT I

TEST LINE

<
3.5GeV/c -> 0. 16eV/e T

To SPS(+)

another five digits, i.e., a new 3.5GeVic 5MeV/u 50keV/u > 10eV/u
regime in slow antiproton 10" /pulse 5x10° /pulse 2x10° /min
studies 1 pulse/min 1 pulse/min

FIGURE 1. A schematic drawing of the proton
synchrotron complex and AD at CERN

As 1s schematically shown in fig.1, the production of a high quality antiproton
beam of ~10 eV is going to be realized via _
1)Production of ~5x107 p/pulse at around 3.5GeV/c with 26 GeV/c protons
of 1.5x10"/pulse supplied from the CERN PS (proton synchrotron)
2)Accumulation of the 3.5GeV/c p, cooling, and deceleration down to
100MeV/c (5.3MeV/u) in the AD (Antiproton Decelerator), which takes
~1min for cooling and deceleration. (Because of this macroscopic cooling
time, slow unstable particles such as g or 7" are not available in this way.)
3)Extraction of ~1x107 antiprotons per Imin. at 5.3MeV/u with the pulse
width of ~250ns from the AD, and deceleration down to ~50keV by the
RFQD (radio frequency quadrupole decelerator). (The electrodes of the
RFQD can be biased by 50kV, i.e., the energy of p from the RFQD is in
principle continuously tunable from 0 to 100keV)
4)Injection into a superconducting solenoid where the Multi-Ring electrode
Trap (MRT) is installed.
5)Capture, cooling down below eV, radial compression, and finally
extraction from the MRT, which is expected to provide ultra slow
antiprotons with an efficiency of several tens %.
Transport features of the antiprotons from the RFQD to the trap have been
simulated intensively by the RFQD group at CERN, which tells that the envelope (at
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5 standard deviations) of the antiproton trajectories is compressed down to ~2 mm in
radius upon injection at the center of the solenoid (10) (11).

A schematic diagram of the antiproton cooling procedure is given in fig.2. In
order to capture antiprotons with rather low trapping potential, a thin degrader foil
will be inserted to reduce the antiproton energy below 10 keV. The foil can be
positively biased, which effectively reduces the energy straggling of the degraded
beam and eventually increases the trapping efficiency (12). The right end electrode
of the trap (see fig.4) is negatively biased so that it reflects antiprotons. Before the
reflected antiprotons reach the left end of the trap, the left end electrode is biased
from 0 to <-10 kV, which results in trapping the antiprotons. In the trap, electrons
are pre-loaded, which are cooled via synchrotron radiation with a time constant T,,,.
At 5T, 1, is about 0.1sec (7). The cooled electrons then cool the injected
antiprotons via the Coulomb
interaction in the time range of r
10 sec. (6) (13). The MRT has
been employec16 to store as -
many as ~5x10° p and about /V
100 times more electrons in a Degradtion Fol —
prolate spheroid with a radius (Biased) | |
~1 mm and its axial length ~50
mm with a rather low trapping
potential. It is noted that the L T c——
overall trapping efficiency of Injection _/”
the present setup is designed to 10%
be about two orders of
magnitudes higher than that
obtained by a conventional  Capture —_
trapping scheme, ie, the -
combination of a degrader foil
and an electro-magnetic trap.
Recently, slow positrons of .
0.1eV to several tens eV with ggggg’ssion -*
an energy width of about
18meV have been successfully ~ Electron

Solenoid Coil |

Antiprotons (50keV)

l N
| e

prepared (14) employing a Ejection 10 p

method similar to what is  Extraction o>
discussed here, which supports <
the scheme described here. [

FIGURE 2. A schematic procedure to trap, cool,
and extract antiprotons.

Figure 3 shows a drawing of the superconducting solenoid, which is designed so
that (a)the bore is bakable while keeping the superconducting solenoid at liquid
helium temperature, and (b)the bore where the MRT is installed is independently
movable to align the MRT axis to the symmetry axis of the magnetic field, which is
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essential to realize a successful extraction of slow charged particles. Further, the
magnetic field is scannable at 5T/90sec, which allows us to vary the field strength
depending on the operational stage, i.e., injection, cooling, or extraction. In order to
simulate the whole procedure to prepare ultra slow p trapping, cooling, and
extraction, experiments with p and H are in progress (13).

As is well known, the rotation angular frequencies for electron and antiproton
plasmas, o, and o 3, are given by

®. = (1/2) (mce +- ((‘ot:e2 -2 mpez)ln) > (2)
o5 = (m/2m) (o, +- (@ -2 (m/2m)e,H") , 3)
respectively, where o, is the cyclotron ’gl

angular frequency of electron (=eB/m,),
©,, is a plasma angular frequency of the
electron, which is defined as
(P PEYm,eq) ~ 5x10* (pfem™)™
(sec™). In the present condition (i.e., p,
>> p+ ), P governs the Brillouin limit |
for antiprotons as well as that for
electrons, which are 3x10°B(T)%cm® and
5x102B(T)¥cm?®, respectively.  The
solenoid is designed to yield 5T, which
guarantees that the expected plasma
density is well-below the Brillouin limit
even for antiprotons. In this case, o,
and o ;" are approximately given by o,
and (m/m ;) ©. (= o5 ), respectively,
and 0, and o ;" are

we- ~ (('opcz/2 mce) (1+ mpez/zmce2)5

4)
o7 ~(0,2 o)1+ m; o, 2m, o),

&)

FIGURE 3. A drawing of the 5T

superconducting solenoid.
respectively. Equations (4) and (5) tell that (a) o ;" is proportional to p/B, i.e., the
kinetic energies of antiprotons and electrons due to the rotation are higher for lower
B, (b) for p,~5x10”/cm® and B=5T, o ;" is ~2% larger than o,, which causes the
antiproton cloud to be extruded out from the electron cloud (15,16), and (c) @ 5 is
~10"/sec, which corresponds to the p kinetic energy of ~0.5 eV at the periphery of
the plasma. This rotation could cause a serious problem if one wants to have very
cold antiprotons in the laboratory frame although the antiproton temperature in the
rotation frame could be as low as the environmental temperature, i.e., several K in
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FIGURE 4. A drawing of the MRT.

the present case.

A drawing of the MRT is shown in fig.4, which consists of 14 cylindrical
electrodes of 40 mm in inner diameter and total length of ~500 mm. Seven
electrodes near the center are to form a harmonic potential to stably store and cool
antiprotons (8). One of them is segmented into four so that a rotating field can be
applied to the plasma to increase or decrease its rotation frequency (17) (18). Asis
seen from egs. (4) and (5), the higher the frequency, the higher the density, i.e., the
plasma is compressible by applying appropriate rotating fields. The plasma
compression in the MRT has been successfully tested with electrons (13).

Cooled antiprotons will be extracted at ~keV as a continuous or a pulsed beam
from the trap and transported to the target area, where the antiprotons are decelerated
down to 10 eV range. Several differential pumping stages separated by small holes
(~3 mm¢) are necessary on the way from the trap to the target chamber, to keep the

trap area at UHV and at the same time to use a gas cell of 10”Torr in the target
chamber.

ATOMIC PHYSICS WITH ANTIPROTONS

Ionization

One of the most fundamental process in atomic collisions is ionization. In
particular, ionizing processes in p-H collisions provide the simplest and accordingly
the ideal case to test our understanding of collision dynamics (2) (19). At high
velocities (i.e., the projectile velocity is much bigher than a typical velocity of the
electron to be ionized), single ionization cross sections are known to be practically
the same for p and p as the first Born approximation tells. When the projectile
velocity gets lower, the polarization effects and then deflection effects start to play
roles, which make the ionization cross section by p to be smaller and then higher
than that by p.

Single ionization cross sections of D for p are summarized in fig.5 together with
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several theoretical predictions (20) (21) (22). It is seen that the theoretical
predictions agree more or less with one another for energies higher than ~ 50 keV as
well as with the experimental results. At lower impact energies, although the
scatter among different theoretical predictions is rather large, many theoretical results
predict that the cross section becomes almost energy independent. Already in the
late 40°, Fermi and Teller (23) discussed that the binding energy of an outermost
electron of the atom gets smaller when an antiproton approaches an atom, and at a
certain distance, d,, the binding energy vanishes (d,, is called the critical distance),
Le., the atom is ionized even when the collision evolves adiabatically as far as the
distance of closest approach is smaller than d,, . It is noted that such a behavior is
quite different from that of the ordinary ion-atom collisions, where the ionization
cross section decreases as the projectile velocity decreases unless a resonant charge
transfer process comes into play. According to this discussion, an expected ionization
cross section is ~1.3 a.u. (Fermi-Teller limit) considering d_, for H is 0.63 a.u. It is
noted that the experimental results are about three times bigger than the Fermi-Teller

limit. It is predicted that “non- 25

adibatic effects in adiabatic . T CTME Weliard )
collisions” play important roles 2.0 ".."‘-._ — Eg&;’sﬂi‘iﬂﬁia(:%‘u
because the binding energy gets T e e T o5)
very shallow during the collision, AN TUT perbanes uma o)
ie, the Massey criteria, ‘< : :

2naAE/ho >> 1 (ais of the order p+D

of the impact parameter, AE the ' \

energy difference, h the Planck 05 .

constant, and vthe projectile B

velocity), is not necessarily 0 -
satisfied for negatively charged 1 10 100 1000
particles even at low velocities. Enerpy KeV|

FIGURE 5. Single ionization cross section
of D by antiprotons (see the text for details)

The single ionization cross section of He shows a clear peak at ~70 keV in
contrast to the D target case (2) (24). It is noted that the critical distance for He is
"negative", i.e., the electronic binding energy stays negative finite even under unified
atom limit, which is known as H". Ionizations of atoms and molecules with different
critical distances are expected to be very important for comprehensive understanding
of collision dynamics.

Kinematically complete ionization experiments of hydrogen and helium targets
by antiprotons are under discussion employing a technique of Recoil-Ion Momentum
Spectroscopy (25), which will be combined with a table top electrostatic storage ring
(26). The double ionization process of helium by antiproton has been intensively
studied, which revealed that 6*(' p) is about two times larger than ¢**(p) of the same
velocity even for projectile energies as high as 10 MeV/u (2). It has been shown
that the electron-electron correlation plays an essential role to reproduce the
observations. In this direction, the study of double excitation process combined
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with the kinematically complete experiment described above should be very
interesting, because a collision system with (quasi-)bound states can be handled more
accurately as compared with those involving two continua like in the case of double
jonization, and could be more sensitive to details of the collision dynamics (27).

The stopping power of ~keV antiprotons, the channeling of ~100 keV
antiprotons through a single crystal target, etc. will also be studied with beams
directly from the RFQD and the MRT. It is predicted that ~100keV antiprotons
show a characteristic channeling pattern (28), which will be experimentally studied
for the first time with antiproton beams from the RFQD.

Antiprotonic Atom Formation

When an antiproton with very low kinetic energy ionizes an atom, it can be
trapped into an atomic orbital with a large principal quantum number #. Considering
the energy conservation before and after the collision in the center of mass system,
the binding energy of p, &5, , is estimated to be

£ (~ (3 /MNer/M)) ~ Eaa - Kias ©
where p,p is the reduced mass of particles A and B, & is the Rydberg constant

(~13.6 eV), g, is the binding energy between A and B, K, = (1/2)1p Vg5 and v,
is the relative velocity between A and B (7). Equation (6) tells that (a) the trapping

cross section is finite if 0 <K 5, < g, 14 —r— T —— T T
and (b) » is a function of K ;,, which .|| )

varies from i (M1 34 } ! — pza”: (P'°F°"'umt) :
fm)(Exle 34 Y ) to infinity as K, o ]! o 4
; - \ pbar + H, (protonium)
increases from 0 to s,, ie, the z a| Y === pbar + Hy (ioni. + protonium) -
principal quantum number » is tunable. 2 3

Because the momentum carried by the i or i
released electron is fairly small, the @ a5 \ N vl .
momentum of pA” is practically that % oL - T i
of the incident p. In other words, T

the pA* so prepared could be used as O3 a8 80 100 120
a high quality beam maintaining the ENERGY (eV)

quality of the incident p beam.

FIGURE 6. Protonium formation cross
section for H and H, (see text for details).
The above qualitative arguments are more or less confirmed by a CTMC
(Classical Trajectory Monte Carlo) method and an FMD (Fermion Molecular
Dynamics) method to treat p-H and -H, collisions in a low energy region (29)(30),
the prediction of which is shown in fig. 6. The solid line and the dotted line shows
protonium formation cross section, & ;,, and total (formation and ionization) cross
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section, o, in p-H collisions, respectively. A clear threshold is seen at around
30eV for © 5, although o, varies smoothly. The same calculation predicts that the n
distribution peaks at around 30, 38, and 60 for the antiproton energy of 2.7, 10.8, and
21.8¢V, respectively, which is also consistent with eq.6. The / distribution peaks at
around 25, 35, and 30 for the above antiproton energies (30). At very low energies,
the polarization of the target atom becomes important, which makes the antiprotonic
atom formation cross section to be inversely proportional to the antiproton velocity.

The prediction for H, targets are also shown in fig.6, which indicates that initial
internal motion of the molecule plays an important role in the antiprotonic atom
formation process (29). Because of this, the antiprotonic atom formation cross
section stays finite even beyond the threshold energy given in eq.6. The dash-dotted
line and the dashed line in fig.6 show o ;,, and o, for p-H, collisions, respectively.
The internal motion also considerably broadens the angular distribution of pp. The
role of the third body in determining the pA* formation cross section above the
threshold has also been predicted for multi-electron system like Ne (31). Further,
molecular targets could provide an interesting chance to study a "dynamic Stark
effect" because the antiprotonic atom evolves in the electric field of the spectator
atom (ion) for a finite time. The electric field will increase the fraction of s-state
components due to Stark mixing, and accordingly increase the annihilation rate,
which may provide a new and sensitive measure of collision dynamics.

Various multielectron antiprotonic atoms are also expected to have intrinsic meta-
stability, which can be realized only when they are produced in vacuum under single
collision conditions. Like in the case of H, Li has a positive critical distance for
antiproton (d.,=0.79 a.u) (32). As the antiproton replaces the 2s electron of Li, it is
far outside of the residual two 1s electrons, i.e., the Auger transition rates will be
fairly small because the transition energies are large and the spatial overlap between
the initial and the final orbits is small. It is further noted that the antiprotonic states
with the same principal quantum number but with different orbital angular quantum
numbers do not degenerate, i.e., pLi’ is strong against annihilation induced by Stark
mixing(32,7,11). In the same direction, pHe* produced in collisions with He in
metastable states(1s2s™S, 1s2p’P, etc.) is also expected to be very stable. pHe'
eventually decays into pHe**, which is again metastable as far as it is in vacuum.
Other examples of metastable antiprotonic are discussed in ref.(7) (11).

High Precision Spectroscopy of Antiprotonic Atoms

The discovery of meta-stable pHe" has made it possible to study the nature of
antiprotonic atoms with high precision laser spectroscopy (3) (33). This field has
developed rapidly from the level of identification of the principal and angular
momentum quantum numbers (i.e., n and /) to the level of determination of the
transition energies with a fraction of ppm (5), which agrees with theoretical
predictions taking into account relativistic and QED effects on the bound electron
(34) (35) (36). The above finding tells that if the theoretical treatment of the
Coulomb three-body system is correct, the mass and the charge difference between
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proton and antiproton is less than ppm, which is an order of magnitude more accurate
than before. '

b4

In the ASACUSA '\ Track Detector
project, studies in this N
direction will further be /
pursued employing, e.g., . T = = w%
laser and microwave | ﬁ f — >
double resonance, P R /[
which  enables to g / ! %
determine the magnetic v N ~
moment of antiprotons ¢ Detector ’ / .
with  much  higher
accuracy ~ than  ever (perpendicular 1
achieved. Laser or paralel to

the beam)

FIGURE 7. A possible experimental setup of _lifetime

measurements and laser spectroscopy of pp, pHe',

pHe™, etc. :

Among various antiprotonic atoms to be available with the ultra slow p beams,

protonium is particularly interesting because it is the simplest two body system
consisting of a particle and an antiparticle with strong interaction. It is noted again
that a monoenergetic pp is available only with an atomic hydrogen target, the
density of which cannot be very high. In this respect, a possible alternative of a pure
two body system is pHe"™, the principal quantum number of which could be tunable
not only with the incident energy of p but also with a He target in excited states.
Such a two body system in a Yrast state can decay only via slow radiative transitions
when the external electric field is negligible, and its lifetime can be much longer than
lusec, ie., a high resolution laser spectroscopy becomes applicable to protonium
and/or pHe" for the first time. A sketch of a possible experimental setup to
measure the formation cross section and to make high precision laser spectroscopy is
drawn in fig.7. The formation cross section and the (»,/) distribution of pp will be
determined by measuring the time difference between the electron signal and the
annihilation signal together with the position of annihilation. In the case of Laser
spectroscopy, again the emitted electron triggers a Laser, which excites one of the
formed states into a high » state with a much longer lifetime, i.e., a high precision
spectroscopy of pp can be made via the lifetime measurements.
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Abstract.

For the ASACUSA project, a new charged particle trap was designed and con-
structed. Like a Penning-Malmberg trap, static electric and static magnetic fields are
used. Multi-ring electrode is exploited to generate a harmonic potential on the trap
axis. It enables the confinement of a number of antiprotons and electrons for the elec-
tron cooling. Upon its design, plasma behavior of trapped particle clouds was taken
into consideration.

As the first step, trap performances have been checked with electrons. Current
status are presented.

INTRODUCTION

In ASACUSA project, experiments are planned to investigate initial formation
processes of antiprotonic atoms, interaction between antimatter and matter etc.,
most of which require ultra-low energy antiproton beams [1-3]. At Antiproton
Decelerator (AD ; at CERN), 107 antiprotons of 5 MeV will be at hand as a
pulse of 250 ns with a repetition period of one minute. In our scheme, MeV-
energy antiprotons from AD will have several tens of keV after passing through an
RFQ, post decelerator. Those antiprotons enter a Multi-Ring Electrode(MRE) trap
described in the following section. Then the well-known electron cooling technique
will be applied. Dense cloud of antiprotons, together with electrons, are supposed
to behave as a nonneutral plasma. Extraction method is being considered.

A MRE trap allows the utilization of axially long harmonic potential region.
Advantages are :

CP498, Non-Neutral Plasma Physics II, edited by John J. Bollinger, et al.
© 1999 American Institute of Physics 1-56396-913-0/99/$15.00
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(a) It ensures longer life times of plasmas than in the case of square potential [4].

(b) When the plasma radii are reduced, plasmas can freely accommodate them-
selves so that their axial lengths are longer, which can reduce a possibility of
plasma heating up.

" (c) It allows the plasma CM motion which can be used for diagnoses.

TRAP DETAILS

Design  In designing the trap, following two points are especially considered :

1. Preparation of 10°~7 antiprotons with sub-eV energy within one minute (the
value of which comes from the pulse interval at AD).

2. Extraction of cooled antiprotons from the trap which is located in the strong
magnetic field.

As low energy charged particles tend to follow the field line, it is essential to make
the position of the particles as close to the axis as possible for their extraction as
a beam. One solution is the application of a rotational electric field, known as a
“rotating wall method”. Such a field can exert a torque on the plasma so that the
plasma shape can be changed [5,6]. This method is thought to be effective in our
application and one of the electrodes is segmented for the radial compression of the
plasma.

When the plasma composed of electrons and antiprotons is axially compressed
in this way, it stretches in the harmonic region. It can be noted that the square
potential does not allow such an axial expansion. To reduce the space potential
while keeping the cooling power high enough, central harmonic region is elongated
in the axial direction so that the density will be optimum. Multi-ring structure
[7,8] is exploited to generate such a harmonic potential.

Supposing that an antiproton cloud (density n,, temperature T,[K]) and an elec-
tron cloud (density ne, temperature T[K]) are uniformly mixed at a time ¢ = 0,
simulations were done to estimate the time necessary for the electron cooling of
antiprotons. Using cgs units, time cvolution of T, and T, were determined by
following set of equations

dT,
—th—p = Vpe(Te - Tp) (1)
dT,
Et— = l/ep(Tp - Te) - TeA (2)

where A ~ 37['_81‘]—2 is a synchrotron radiation cooling rate found experimentally

[8]. Using Boltzmann constant(k), electronic charge(e), electron mass(m,) and
antiproton mass(m,), equilibration rates (Vpe, vep) are given by
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8v/2me? mé m?
Vpe = 3 Tie Ape 3 (3)
3k2 (mpT. +meTy)2
11
8v/2me? mimé
Vep = 3 NpAep i (4)
3k (mpTe +meTy)2

In FIGURE 1 and 2, result are shown. Realistic experimental conditions are
assumed : B = 5[T], T,(0) = 5.8 x 107[K](= 5000[eV]), T(0) = 4[K] , Coulomb
logarithm Ag, = Ape ~ 30. For the calculation in FIGURE 1, n, = 108 [cm“”], e =
10%[cm~?] were inputted and in the FIGURE 2, n, = 10%[cm™?], ne = 10°[cm 3]
were used.
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FIGURE 1. Simulation of electron cooling rate. ; n, = 10%[em™~3], ne = 10%fcm™3|
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FIGURE 2. Simulation of electron cooling rate. ; n, = 10%jem™3], ne = 10°[em™3

It is seen that electrons initially warmed up by incoming hot antiprotons lose
their energy via synchrotron radiation and both antiprotons and electrons will be
cooled below 1 eV within one minute. We may note that the cooling time will be
longer if consider the anisotropy on the space and the temperature. Cooling time
is thought to be optimized by adjusting the densities of two species.
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Ezperimental Setup  In FIGURE 3, shown are electrode configuration and
schematic trap-cool-dump procedure. The ratio of the axial extent of the harmonic
region to the radius of electrodes is about 5 times larger than that of a traditional
Penning trap.

(=) ~— () \bezmm

\ I

F3fF2| F1 B1i( B2 F.C.

flus 18 11013 1 I

I

M
z
=
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ectrons : 50 ~ 100eV | 1 \

Electron spheroidal plasma

FIGURE 3. Configuration of trap electrodes. Inner diameter of cylindrical electrodes is 40 mm.

All the electrodes are made of OFHC copper with the machining precision of
10 pm and gold plated with the thickness enough to improve the surface property
while the precision is tolerable. They are aligned on a base plate which is machined
with the same precision. Insulation is done by pieces of AIN, which is known to be
a good thermal conductor as well as an electric insulator.

For the application of rotational rf field, an electrode that is azimuthally seg-
mented into four identical parts is located next to the one at the center. On one
end of the trap there is a Faraday cup which serves as a detector for destructive
diagnosis. It consists of two concentric parts as shown in FIGURE 3. In the future
when the system is incorporated with the beam line, this part will be replaced
by an grounded electrode. Two electrodes marked as HV are for the catching of
energetic antiprotons.

All the system is installed in a superconducting solenoid. The uniformity of the
magnetic field is better than +0.5% within a region of 10 mm(D) x 1100 mm(L)
and considered to be much better in the trapping region.

We also have a duoplasmatron ion source which can supply both proton and
negative hydrogen ion beam. A negative hydrogen ion has a binding energy of 0.74
eV and can be used to simulate an antiproton in the low energy region. For tests
like the injection of a high energy beam into the trap, protons will be used. A beam
line which connects the ion source and the trap is already constructed and tested.



RESULTS

At first, electron trapping experiments were performed. A hot cathode located
at the position 5cm off axis, in about 1 m from the center of the magnet (B-field
strength ~ 100G) is used to generate electrons. They were injected into the trap
as a pulse train. Typical incident energy was 95 eV. Two HV electrodes were not
used for electron trapping. Instead, two electrodes next to them (F3 and B2) were
utilized for the initial confinement.

Trapping potential except the one for the entrance wall was formed before-
hand(F2 - B2) and, by raising the potential height on the entrance(F3), confinement
was completed(shown as 1 in the FIGURE 3). After a trapping period, electrons
were dumped by changing the potential(shown as 2) and detected at the Faraday
cup. Magnetic field strength was kept at 1 T during all the measurements.

The life time of electron plasmas was measured to be around 200 sec under the
base pressure of 5 x 10~° Torr.

In FIGURE 4, the effect of rotating electric field is shown. Sweep rate was

set to be 2 MHz/min. There was shot-by-shot fluctuation in the number of elec-
trons(about 10 %), which is not shown in the graph.
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FIGURE 4. Effect of rotating electric field. (A) : with RF, (B) : without RF.
It was shown that the rotational electric field can compress the plasma and up
to 60 % of the constituent particles was confined in a region of 2 mm in diameter.

In addition, the life time of the plasma became longer. It can also be seen that
the application of too high frequency reduces the fraction of electrons compressed
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radially. Since the effectiveness also depends on the sweep rate, optimization is still
necessary. Generation of electrons by ionizing the residual gas was observed when
the amplitude was too high.

Observation of radial and axial plasma modes by a spectrum analyzer has been
also performed by picking signals up from the segmented electrode or one of the
ring electrodes. When the rotational electric field was properly applied, (2,0) and
(3,0) mode frequencies increased.

Injection of negative hydrogen beam was tried, though their plasma oscillations
have not yet been observed. Electron cooling of them is in progress.

CONCLUSION

In a newly constructed Multi-Ring Electrode(MRE) trap, electrons were success-
fully trapped and electrostatic modes of plasmas are observed. The rotating wall
method was applied and radial compression was achieved.

Simulation experiments are being performed with protons(~50keV) and H~™
ions(~1keV) from a duoplasmatron ion source.
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Antihydrogen Recombination
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Abstract. The use of a Malmberg-Penning type trap with nested electric potential
wells to confine overlapping antiproton and positron plasmas for the purpose of produc-
ing low temperature antihydrogen is studied. Two approaches for confining antiproton
and positron plasmas with a region of overlap are considered. In one approach the two
components have a large temperature difference. In the other, one of the components
is in a nonequilibrium “antishielding” plasma state.'? A finite differences algorithm
is used to solve Poisson’s equation based on a simultaneous overrelaxation numerical

approach.3 Self-consistent numerical results for required trap potentials and possible
particle density profiles are presented.

INTRODUCTION

The possibility of precise tests of CPT invariance and other fundamental symme-
tries using antimatter has increased interest in the production and confinement of
cold antihydrogen. Various methods of confining antiproton and positron plasmas
together to allow for recombination have been proposed [1]. One such proposal is
to use a Malmberg-Penning trap with nested oppositely signed electric potential
wells to simultaneously confine the antiprotons and positrons in the same spatial
region [2].

Using a Malmberg-Penning trap, two confined plasma components with equal-
magnitude oppositely signed charges can have a region of overlap through one of
two scenarios [3]. An electrode configuration suitable for both scenarios is shown
in Fig. 1. The difference in potential between the central electrode and the inner
electrodes produces an electric potential well referred to as the inner well. The dif-
ference in potential between the central electrode and the outer electrodes produces
an oppositely signed potential well, referred to as the outer well, which is nested

) Electronic mail: cao@unt.edu

1) C. Hansen and J. Fajans, Phys. Rev. Lett. 74, 4209 (1995).

2) (. Hansen, A. B. Reimann, and J. Fajans, Phys. Plasmas 3, 1820 (1996).

3 R. L. Spencer, S. N. Rasband, and R. R. Vanfleet, Phys. Fluids B 5, 4267 (1993).
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FIGURE 1. A nested electrode configuration.

about the inner well. In the first scenario for using a nested Malmberg-Penning
trap for producing antihydrogen atoms, the two temperature approach, both the
antiproton and positron plasma have a thermal (Maxwellian) velocity distribution.
To allow for confinement with overlap, it is necessary for one plasma component to
be significantly hotter than the other. The second scenario allows for the overlap
to occur with two equal temperature components, provided one of the components
is in a nonequilibrium plasma state.

TWO TEMPERATURE METHOD

If each plasma component is in a local thermal equilibrium, two simultaneous
requirements exist. Considering antiprotons to be the inner well species, it is nec-
essary for eA¢n, /T~ > 1 to have good confinement of the antiprotons along a
magnetic field line, where e is the unit charge, A¢,, is the inner well depth along
the field line and T is the antiproton temperature in energy units. For the positrons
to overlap the inner well, eA¢,,/T; S 1 is required, where T is the positron tem-
perature. It is only possible to satisfy these requirements for T_ <« T,. Because of
this temperature difference, it will be necessary to have the outer well depth much
larger than the inner well depth to provide similar confinement timescales for both
species.

Because the outer well plasma component must be significantly hotter than the
inner well component, and because it is necessary for the antiprotons to have a
temperature of approximately 1 K to magnetically confine antihydrogen atoms
which are produced [1}, it would not be feasible to use a two temperature approach
with positrons in the inner well and antiprotons in the outer well. Using a two
temperature approach with positrons in the outer well may also present difficulties.
A positron plasma with a high enough temperature to achieve overlap without
too much Debye shielding of the inner well does not appear to provide a sufficient
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recombination rate. The recombination rate decreases significantly as the positron
temperature increases [1].

NONEQUILIBRIUM METHOD

Figure 2 shows the procedure for altering the applied potential to achieve an over-
lap of positron and antiproton plasmas with the antiproton plasma in a nonequi-
librium state. Initially the two components are separated and held at the same
potential as shown in Fig. 2(a). Then the shape of the external potential is al-
tered to allow the antiprotons to flow into the nested well. After this occurs the
antiprotons will be in a nonequilibrium “antishielding” state [4,5], and will have
a maximum density within the inner well. Eventually the antiprotons will relax
towards local thermal equilibrium and the two components will separate. Depend-
ing upon the timescales for recombination and relaxation the process may need to
be repeated. Initial calculations indicate that recombination will occur on a much
more rapid timescale than relaxation and only one cycle will be needed to achieve
recombination of a majority of the trapped antiprotons [6].

Positrons Antiprotons
1 [ ]
@ 5
|
O [ S

Inner Well

v

© [ ——

Outer Well

FIGURE 2. Time dependent procedure for establishing an antishielding antiproton distribution.
(a) Initially the antiprotons are confined outside the nested well. (b) The electric potential barrier
keeping them out of the nested well is removed. (c) The outer well asymmetry is removed such that
the nested well profile is produced with the antiprotons trapped within the outer well. Initially
the antiprotons will move through the end wells quickly so that their density there is smaller than
in the inner well. Eventually the antiprotons will relax toward a Boltzmann density profile and
become trapped in the end wells.

The density profile of the antiprotons along a magnetic field line immediately
after their introduction into the nested well is given by [7]

n_= no_e""erfc[Re(\/@t)] (1)
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where ng_ is the density of the antiprotons on that field line at z = 0, the axial
midplane, and ¥_ = e[¢(z) — ¢(0)]/T- is the normalized potential energy of the
antiprotons. This distribution is characterized by a maximum density at locations
at which ¢¥_ = 0. The density is actually lower within the two end-well regions,
where the antiprotons would be most prevalent if they followed a Boltzmann density
distribution.

The results for a two-dimensional self-consistent calculation of a trap with an
antiproton plasma in the antishielding state is shown in Fig. 3. The trap dimensions
are Lo = 14 cm, Ly = 1.5 cm, Ly = 1.5 cm and 7, = 1 cm, where r,, is the inner
radius of an electrode. The voltages are V; =0, V; =4V, and V, = —6 V. The
midplane radial profile used at z = 0 is h(r) = 1—(2r/r,,)* for 0 < r < r,,/2, where
a = —2.3/In(1 - A\p/ry) [3]. Plasma parameters used are ngy (r = 0) = 103 m=3,
no-(r =0) =10°m™3, T} = 0.1 eV, T_ = 0.0001 eV (= 1 K) where nos(r = 0)
is the density of the positrons/antiprotons at the geometric center of the trap.
The high positron temperature is chosen for computational reasons only. As the
temperature of the positrons decreases the Debye length decreases and the number
of computational grid points required to do the calculation increases. However, the
voltages used arc large compared to the positron temperature, and the positron
density will fall to zero at roughly the same axial and radial positions. These
results are expected to be independent of the positron temperature for T, < Ad,,.

Figure 3(a) illustrates axial confinement of the positron plasma. For z 2 7 cm,
which is where the center electrode is not present, the positron plasma density
becomes negligible. Figure 3(b) illustrates an antiproton plasma that follows the
density profile described by Eq. (1). Because eAg,, > T_, the antiproton density
in the inner well is much larger than in each end well. It should be noted that the
resolution of the plot is insufficient to show a spike in the density that occurs at
around z = 8.5 cm where the potential passes through a zero point. Figure 3(c)
shows the electric potential profile. Along the inner surface of the electrodes (at
T = Ty), the potential has a square nested-well appearance. This occurs because
in the calculation the separations between electrodes are set equal to the grid
spacing. Along the axis of the trap (at r = 0), the potential is much smoother as
expected. Within the central electrode, the space-charge of the positron plasma
raises the potential along the axis to about 1.36 V. The voltage V; had to be chosen
larger than the positron plasma potential so that Ag,, was sufficient to confine the
positrons. With V; = 4 V, A¢,, = 1.59 V along the axis and A¢,, = 2.6 V at
T =1Ty/2.

In the antishielding state, the antiprotons can be considered to comprise two
counter-streaming antiproton “beams” within the end wells. The average axial
speed and density of antiprotons in an end well can be calculated using Egs. (2)
and (3) of Ref. [7]. The relative velocity between the beams is twice the average
axial speed or,

2e~¥m

~ Vberte (Vi)

Urel
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FIGURE 3. A plot of the self-consistently calculated density profiles along r = 0 for (a)
positrons and (b) antiprotons, as well as electric potential along r = 0, 7 = 7,/2 and r = ry, (c)
for a nested well plasma trap with positrons in the inner well, and antiprotons in an antishielding
distribution.

where ¥, = €Ay /T- is the normalized well depth, § = m_/(2T-), and m_ is the
antiproton mass. The density for one beam is half the total density in the well or,

1
Nbeam = §no_e¢’"erfc <\/¢m)

One thing that should be considered for a plasma in an antishielding state is the
possible occurrence of the two-stream instability. The condition for the two-stream
instability to occur is (c.f. Ref. [9])

TUrel

(wﬁ? + w§é3>3/2

where wy,; and wyy are the angular plasma frequencies for each counter-streaming
beam, respectively. For the antiprotons,

Thheam

Wyl = Wpp =€
P P €M

In consideration of the above parameters, it is easy to find that the antiprotons in
the end wells are not subject to the two-stream instability.
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CONCLUDING REMARKS

An initial analysis of the problem of confining antiprotons and positrons in a
nested well trap at parameters suitable for producing cold (=~ 1 K) antihydrogen
has been performed. The results indicate that a region of overlap between the two
plasma components can be achieved by preparing the outer well plasma component
in an “antishielding” state. After initially preparing the antihydrogen plasma in an
antishielding state, the plasma will gradually relax to a Maxwell-Boltzmann phase-
space distribution. If the positron plasma is not present, the temperature of the
relaxed antiproton plasma would be Tyine = (2/3)eAdr, + Tinitiar. However, with
the presence of a positron plasma having a heat capacity much larger than that of
the antiproton plasma, the positron temperature can be expected to remain roughly
constant, and the final temperature of the antihydrogen plasma will approach the
temperature of the positron plasma (with the two species separating). During the
antiproton plasma relaxation, the antiproton plasma in the overlap region can be
expected to remain in collisional thermal equilibrium with the positron plasma [6].
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Analysis of Time-Dependent Effects
When Operating Nested-Well Plasma
Traps for Achieving Antihydrogen
Recombination

Yongbin Chang, D. D. Dolliver, and C. A. Ordonez!

Department of Physics, University of North Tezas, Denton, Texas 76208

Abstract. In the work reported, time-dependent effects are considered which affect
the prospect of getting two oppositely signed plasmas to overlap the same region while
trapped within a solenoidal magnetic field. Parameters that are relevant to future
experimental attempts at producing cold antihydrogen atoms using nested-well plasma
traps are considered. It is found that the timescale over which an overlap remains,
without changing the electrode voltages, can be much larger than the timescale over
which the overlap plasma recombines. Hence, it does not appear necessary to use
time-dependent electrode voltages to maintain the overlap while antihydrogen atoms
are being produced.

INTRODUCTION

Different field configurations can be used for confining nonneutral plasmas. Con-
figurations that consist of a solenoidal magnetic field for providing radial plasma
confinement and an electric field produced by cylindrical electrodes for providing
axial confinement have been called Penning traps and, more recently, Malmberg-
Penning or Penning-Malmberg traps. Malmberg-Penning traps are typically config-
ured to produce a single electric potential well in order to provide axial confinement
for a nonneutral plasma consisting of charged particles having the same sign [1}.
In theory, such traps can also be used to confine oppositely signed plasmas within
regions that overlap [2-4]. A suitable axial electric potential profile is illustrated
in Fig. 1. The electric potential provides an “inner well” for confining positive
plasma particles (e.g., positrons) and an “outer well” for confining negative plasma
particles (e.g., antiprotons). (For convenience, the term “plasma” is used here re-
gardless of whether each plasma species is capable of providing Debye shielding.)
Under three scenarios, the negative plasma species extends through the inner well
to overlap the positive plasma species [3]. In the first scenario, the oppositely

1) Electronic mail: cao@unt.edu
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FIGURE 1. Illustration of an electric potential profile having a nested-well configuration.

signed plasma species are at widely different temperatures with the hotter plasma
species confined by the outer well. The second scenario requires the positive plasma
particles to have high charge states. In the third scenario, the plasma in the “end
wells” is maintained in a nonequilibrium plasma state. The possibility of producing
an overlap using the first scenario has been investigated experimentally [5]. With
sympathetic cooling observed to occur between oppositely signed plasma species,
the presence of an overlap region has been inferred [5]. In the study reported here,
the third scenario is considered and associated timescale issues are identified. To
guide the study, use of nested-well traps for producing antihydrogen atoms is con-
sidered. For the analysis, antiprotons are considered to be trapped within the outer
well and to overlap a position plasma trapped within the inner well.

ONE-DIMENSIONAL DESCRIPTION OF
ANTIPROTON PLASMA

In the present section, the problem is considered in one dimension and the number
of antiprotons that overlap the inner well is assumed to be much larger than the
number within the end wells. Suppose that with suitable choices for the applied
electrode voltages, any of the three axial electric potential profiles illustrated in Fig.
2(a) can be produced by the end-well electrodes. Assume that the potential profile
corresponding to curve 1 is initially produced and that a collisionless antiproton
plasma having a Maxwellian velocity distribution with temperature T is stored
within the trap. If the potential profile is suddenly switched to the nested-well
configuration, curve 2, on a timescale short compared to the antiproton transit
time across the end well, the axial antiproton density profile will be given by

n_ = n,_e¥erfc [Re (ﬂ)] 1

where n,. =n_(z =0), ¢¥ = e[¢p(z) — #(0)]/(ksT) is the electric potential normal-
ized to the plasma temperature, e is the unit charge, kp is Boltzmann’s constant,
erfc is the complementary error function and Re takes the real part of its argument.
Equation (1) applies both inside and outside of the end well. It corresponds to Eq.
(1) of Ref. [6] for 9 > 0 and to the Boltzmann relation for 9 < 0. The density
profile described by Eq. (1), which is illustrated as curve 4'in Fig. 2(b), occurs
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FIGURE 2. Illustrations of normalized electric potential profiles (a) and normalized antiproton

density profiles (b). The conditions under which the density profiles occur are described in the
text.

when a collisionless Maxwellian plasma is allowed to flow into an initially empty
potential well such that energy and momentum carry plasma particles through the
well without becoming trapped within the well. Because the axial speed of the
plasma particles is larger inside the well than outside of it, the density is smaller
inside the well. Consequently, a nonneutral plasma that follows Eq. (1) and causes
an increase in the well depth can be said to “antishield” the well [6]. Hereafter, the
term “antishielding state” will be used to describe a nonequilibrium plasma state
associated with a density profile that follows Eq. (1).

Now assume that the potential profile corresponding to curve 3 is initially pro-
duced and that an antiproton plasma is stored within the trap. This time if the
potential profile is switched to the nested-well configuration (curve 2), the antipro-
ton density within the end well will have a contribution associated with antiprotons
that flow through the end well without becoming trapped plus a contribution from
antiprotons that are trapped in the end well as the transition in the potential profile
occurs. The antiproton density within the end well will be [6],

n_ =n,- <e¢erfc [Re (1/8)] + ert [Re (\/@)]) )

if the potential is switched during a time period short compared to the antiproton
transit time across the end-well length, or, for a long time period [6],

n_ =1, (e”’erfc [Re (v/9)] +2Re [W]) (3)

where erf is the error function. Equations (2) and (3) are illustrated as curves 5 and
6, respectively, in Fig. 2(b). For curves 4 - 6 in Fig. 2(b), the density remains within
a factor of 10 of the value at z = 0. In comparison, the density for an antiproton
plasma that follows the Boltzmann relation [not shown in Fig. 2(b)], n_ = no_e?,
would reach a maximum value more than eight orders of magnitude larger than
the value at z = 0. Also shown in Fig. 2(b), as curve 7, is the normalized density
profile for a positron plasma that follows the Boltzmann relation: ny/n.y = e ?.
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The density profiles described by Egs. (1) - (3) are transient with collisions driv-
ing the antiproton plasma toward a Boltzmann distribution. To characterize this,
consider a time scale, 7, defined as the time required for the antiproton density
in an end well to increase by some fraction of the density at z = 0. Also con-
sider a second time scale, 7,, defined as the antiproton transit time across the end
well. In consideration of the experimental observations reported in Ref. 7 (eg.,
an antishielding relaxation timescale that was considerably larger than the colli-
sion timescale associated with the plasma before the antishielded well was formed)
and the calculations of 7. and 7, reported in Ref. [2], it is reasonable to consider
Te >> 7. On the basis of this difference in timescales, it is possible to develop a
time dependent approach for confining two oppositely signed plasma species (e.g.,
antiprotons and equal temperature positrons) that overlap the same region. A
three-step switching process has been analyzed in detail (see Ref. [2]) and schemes
using moving potential barriers have been studied experimentally [8].

An important characteristic of an antiproton plasma that follows Eq. (1), (2) or
(3) is that within the inner well, the antiproton plasma has a Maxwellian velocity
distribution and can be in collisional equilibrium with a higher density (and higher
heat capacity) positron plasma. Furthermore, the number of antiprotons that oc-
cupy the end wells and are associated with a non-Maxwellian velocity distribution
can be much smaller than the number associated with a Maxwellian velocity distri-
bution. In addition, for an antiproton plasma that follows Eq. (1), the antiproton
density within an end well can be much less than that within the inner well. For
example, at a location in the end well where ¢ = 30 the antiproton density is an
order of magnitude less than that at ¢ = 0.

TIMESCALES FOR AN ANTIHYDROGEN PLASMA

In this section, various timescales are calculated for an antihydrogen plasma
within the inner well of a nested-well trap. The following parameters are considered:
equal temperatures for each species, T = 1 K; a uniform magnetic field, B = 5 T;
a positron density, n, = 5 x 10"® m~>; an antiproton density, n_ = 5 x 1010 m~3;
an end-well length, L., = 1 cm; and an inner-well depth, A¢,, = 1.5 V.

A significant overlap of equal-temperature positron and antiproton plasmas is
assumed with antiprotons in an antishielding state. A simple procedure that can
be used to prepare the antiproton plasma in an antishielding state is described in
Ref. [9]. An antishielding state will last a limited time because collisions will force
a nonequilibrium state to relax to a thermal equilibrium state. The population of
antiprotons will gradually move from the inner well to the end wells. Therefore,
the timescale over which an effective overlap can remain with constant electrode
potentials is of the same order as the relaxation timescale 7, from the antishielding
state to a thermal equilibrium state.

Another important timescale 7 describes the recombination rate of antihydro-
gen. If 77 << 7, then a single overlap with constant electrode potentials can
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recombine most of the antiprotons. Two recombination reactions for forming an-
tihydrogen from free antiprotons and positrons are spontaneous radiative recombi-
nation SRR and three-body recombination TBR. The SRR reaction rate coefficient
aSBR for a 1 K antihydrogen plasma can be found in Ref. [10]. The associate
timescale is 75EF = 1/(aS®Fn,) = 10% s. The TBR reaction rate coefficient can
be expressed as [11], oTBF = 6 x 10724(4.2/T)%?n,.. This recombination rate per-
tains to zero magnetic field. For infinitely high fields, the rate will be an order of
magnitude less [12]. So the TBR timescale 77 = 1/(aT5%n.) is estimated to be
7p=10"7—107% s for T = 1 K. Although atoms produced by three-body recombi-
nation are in highly excited states, collisional de-excitation may occur sufficiently
fast to avoid field ionization of the atoms [13].

If there are no collisions, an antiproton of any velocity that goes into an end
well will come back out to the inner well, and the antishielding state will last
forever. However, collisions cause antiproton trapping in the end wells. Assuming
the parallel energy loss is A¢, for an antiproton during one cycle of motion through
an end well, if the antiproton’s parallel energy is below Ae, traveling into the end
well, the particle cannot return to the inner well, and it becomes trapped in the
end well. The antishielding relaxation time is the timescale for a significant number
of anitprotons to become trapped in the end wells. It is possible to calculate the
average energy decrease {Ae,) based on stopping power theory [2],

Leye'n_ [ewmerfc (\/%)]31 256melky T3
256€2ksT 5 B2 [6¢merfc (m)]‘i

(Qeg) = (4)

where ¥, = eAdy,/(kpT), m is the antiproton mass, and € is the permittivity of
free space. For the parameters above, the average energy decrease is Ae, = 1030
J. This means that only those antipostrons in the inner well with parallel energy
below Ae; become trapped in an end well.

With the average energy decrease Ae,, it is possible to calculate the relaxation
time by assuming that the antiproton plasma in the inner well keeps a Maxwellian
velocity distribution. So the inner well is like a plasma source which constantly
emits antiprotons with a Maxwellian velocity distribution, at the edge between the
inner well and an end well. The relaxation time is estimated by [2],

_ Lewy/nm/(2k5T)
© 2erf (\/(Aem)/(kBT)).

For the above parameters, the relaxation time is 7, = 0.2 s. This timescale assumes
that the antiproton plasma in the overlap region relaxes to a Maxwellian velocity
distribution faster than the rate at which the velocity distribution is deformed
due to loss of antiprotons to the end wells. If not, then the rate at which the
antiproton plasma relaxes to a Maxwellian velocity distribution in the inner well
will determine the rate at which the antiprotons become trapped in the end wells.

(5)

75



An estimate of the rate at which the antiproton plasma relaxes to a Maxwellian
velocity distribution in the overlap region is assumed to be the collision time for
90° scattering, which is 2 x 1075 s for the above parameters. Consequently, the
antiprotons will remain in a collisional thermal equilibrium with the positrons in
the inner well.

CONCLUDING REMARK

With the above calculations, it is found that 7+ << 7. For the same parameters
but considering the temperature to be 10 K, the antishielding relaxation timescale
is 7, = 0.1 s, while the recombination timescale, which is 77 = 1073 ~ 1072 s,
increases about 4 orders of magnitude. Nevertheless, the relation 74 << 7, still
holds. Because of this, most of the antiprotons can recombine with positrons to form
antihydrogen during the time the antiproton plasma relaxes from an antishielding
density distribution given by Eq. (1). Hence, it does not appear necessary to
maintain the overlap using time-dependent electrode voltages during the time the
antiproton plasma relaxes.
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Two-Component Nonequilibrium
Nonneutral Plasma in
Penning-Malmberg Trap
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Tsushimanaoka 3-1-1, Okayama 700-8530, Japan

Abstract. The behavior of the two-component nonneutral plasma in the Penning-
Malmberg trap is analyzed by simulations and theoretical approaches. The parameters
expected in experiments of antiproton cooling by electrons.are assumed. The relaxation
of antiproton energy is followed by the rate equation with proper account taken into
account for the slow transfer of energy between parallel and perpendicular components
of strongly magnetized electrons. The equilibrium distribution of each species are
obtained by molecular dynamics simulations for various values of parameters and the
results are reproduced by theoretical calculations to a good accuracy. The condition
for the centrifugal separation is obtained.

INTRODUCTION

Systems of charged particles in traps are one of typical and simple examples of
strongly coupled nonneutral plasmas and clear observations of various properties
of plasma have been made on classical one-component plasmas in the Penning-
Malmberg or Paul traps [1]. The assembly of trapped charged particles can be
also used to host other particles. The cooling of high energy particles by cryogenic
plasmas in the trap is one of such applications [2,3]. Here the behavior of multi-
component plasmas in the trap is of essential importance. In this paper, we analyze
relaxation processes and the thermal equilibrium in multi-component plasmas in
the Penning-Malmberg trap, assuming the case of electrons and antiprotons when
necessary.

We consider the cylindrical Penning-Malmberg trap with the uniform magnetic
field in the z-direction B = B2 and denote the coordinates of particles r as (R, 6, z).
In thermal equilibrium, trapped particles perform a solid rotation around the z-axis.
The Hamiltonian in the coordinate frame rotating with w is given by H = Hy—~wM,,
where M, is the z-component of total canonical angular momentum, and rewritten
into the form H = H{ + 1 3, k;RZ, where

CP498, Non-Neutral Plasma Physics 111, edited by John J. Bollinger, et al.
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1 1
EZklRf = ~-2—w Z(q,B+m,w)R12, (1)

and Hj has the same form as the Hamiltonian for particles in the rest frame [4].
The term (1) in H serves as a potential which confines particles around the z-axis.

When we have several species of charged particles in the same trap, the confining
potential for the species « is given by %kQRz, where

ko = —w(gaB + maw). )

For electrons (suffix €) and antiprotons (suffix p), g, = —e < 0, and the Hamiltonian
in the rotating frame is given by

1
H=Hj+-w > (eB-muw)R?+ L Y. (eB-muw)R:. (3)

2 electrons antiprotons

For confinement of both species, w > 0, and it is also necessary to have w(eB —
mpw) > 0.

PARAMETERS

Here we list typical values of parameters expected in experiments to cool an-
tiprotons by cryogenic electrons trapped in the Penning-Malmberg trap.

magnetic field B 5T
trap length 1~10cm
trap radius 0.lcm
electron density Ne 10%cm3
antiproton density | n, | 107 ~ 10%m™3
electron temperature | T, 10K
electron solid rotation | w, | 10° ~ 107s7!

electron Debye length | (eokpTe/n.€?)'/? | 7-10~%cm
electron mean distance (3/4rn)* | 6-107%cm
electron cyclotron radius | 2wv, ./(eB/m.) | 9-10"%cm

The Coulomb coupling constant for electrons is given by ', = €?/dnegackpT, =
3-107'. We have an inequality for length scales

electron cyclotron radius < electron mean distance
< antiproton mean distance < antiproton cyclotron radius. (4)
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RELAXATION PROCESSES

Let us now consider the relaxation of energy of antiproton beam parallel to the
magnetic field introduced into cryogenic electrons. This relaxation occurs in three
steps; from the antiproton beam (parallel component) to the parallel component
of electrons, from parallel to perpendicular component of electrons, and from per-
pendicular component of electrons to cyclotron radiation.

When antiprotons are impinging cold electrons with the velocity vy, the loss rate
of parallel energy is estimated by moving to the frame where the antiproton is at
rest and the electron is coming with the velocity —uvp from z = co. In the strong
magnetic field, the drift approximation may be applied [6]. In this approximation,
electrons within the impact parameter

€% /4mey (me/2)0§” (5)

are reflected and those with the impact parameter larger than the above make a drift
motion around the antiproton and eventually move to z = —oo. The perpendicular
energy E, is an adiabatic invariant.

Estimating the frequency of collisions with the impact parameter smaller than
(5), we have

d

1 1 e \? 1 mp\ 12
—Ey=-—Ey,, —=2"m ( ) (__P) . 6
e nof g  \dneg my?E;(f Me ©)

We have performed simulations on the two-body problem in strong magnetic field
and confirmed the validity of (5), obtaining a numerical factor of N(1) .

In strong magnetic field where cyclotron radius is smaller than the close collision
radius, parallel and perpendicular components of energy of electrons relax sepa-
rately to the Maxwell distributions with different temperatures: The relaxation
between these components is a slow process limited by the many-body adiabatic
invariance [7-9]. The relaxation time for the latter is written as

d 1 1 262 ? k‘BTe“ 12
dp Y 1y Lon I(),
da e 7‘2( 1= Te) T n (47r50k3'1 ell) <me/2 () Y

where I (k) is a function of

K

2 -1/2
eB 2e (kBTen) ‘ (8)

- —m_647rsochTe“ me/2

For ne = 10°cm=3, Ty ~ Ter ~ 10K, and B =5T, k = 1.7- 10? and 75t ~ 10%7 1.
The last process is the cyclotron radiation from electrons given by
d 1 1 2¢*B*

Tidel = ——del = -
dit T3 T3 3c5me

)
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This process is determined only by the magnetic field and 73 ~ 9.7s for B = 5T.
For the values of parameters described above, the time development of the each
component of energy is followed numerically. Some examples are shown in Fig.
1. We observe that the input of the energy from the antiproton beam is shared
equally by the all degrees of freedom and then cooled by radiation with a rather
long time scale 73. The slow relaxation between the parallel and perpendicular
components of electrons in strong magnetic fields leads to the overshooting of the
parallel temperature before equipartition. The effect on the overall relaxation,
however, is small and may be virtually negligible: The time scale 73 is too long to
observe this effect in the final results. For smaller electron densities, the time scale

for relaxation of antiproton energy naturally increases as indicated by the factor n,
in inverse relaxation time.

EQUILIBRIUM DISTRIBUTION

Let us now assume that electrons and antiprotons are in thermal equilibrium
and look into their distributions. We have simulated our system by the constant
temperature molecular dynamics and analyzed the results on the basis of our the-
oretical approach which has been successful for the case of single component.

Molecular Dynamics Simulation

The distribution in thermal equilibrium depends on the frequency of solid ro-
tation w, the temperature expressed in terms of the coupling constant I", and the
ratio of densities n,/n.. For some examples of parameters, the distribution of each
component is shown in Fig. 2. We observe that when the frequency of solid ro-
tation is large and the temperature is low, there exists clearly separated shell of
antiprotons. The position of the antiproton shell is plotted in Figs. 3a and 3b as a
function of the solid rotation frequency together with the outer radius of electron
distribution.

Theoretical Analyses

Without antiprotons, electrons form a cylinder composed of many concentric
shells at low temperatures. When antiprotons are introduced, they will seek the
minimum of the sum of the electrostatic potential due to electrons ¢, confining
potential for antiprotons, and their mutual interaction. Regarding electrons as
continuum, we have for ¢, .

g e R2 2 Ne
—e?—="— +const (R<R,), —e‘——InR+const (R>R,), (10)
250 2 271'50
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FIGURE 1. Relaxation of energies. From left to right, parallel component of
antiprotons, parallel, and perpendicular components of electrons.
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FIGURE 2. Examples of equilibrium distribution of electrons (dots) and antipro- -
tons (crosses) observed along the magnetic field.
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FIGURE 3. Position of antiproton shell and the radius of electron distribution.
Simulation (symbols) and theory (lines).
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where JV, is the line density of electrons and R, is the radius of electron distribution.
Their mutual interaction may be calculated as a sum of the continuum limit and
the two-dimensional correlation energy. Since, outside of electrons, the electrostatic
potential of average electron distribution can be evaluated by collecting electrons
to the axis, this is an extension of our previous results for one-component system
with an central electrode [10].

The results of theoretical analyses are shown also in Figs. 3a and 3b. We observe
that theoretical results almost reproduce simulations. In the case of np/ne = 1,
all of antiprotons cannot be accommodated in the outer shell and some are mixed
with electrons thus increasing the radius of electron distribution.

CONCLUSION

The two-component nonneutral plasmas in the Penning-Malmberg trap have been
analyzed by molecular dynamics and theoretical approach. The energy equilibra-
tion process and the equilibrium distribution have been obtained and the conditions
for the centrifugal separation are clarified. The equilibrium distribution is almost
reproduced by theoretical approach.

This work has been partly supported by the Grants-in-Aid for Scientific Research
(B)08458109 and (B)11480110 from the Ministry of Education, Science, Sports, and
Culture of Japan.
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FLUID AND KINETIC STUDIES




Characteristics of Two-Dimensional
Turbulence That
Self-Organizes into Vortex Crystals

Dezhe Z. Jin and Daniel H. E. Dubin

Physics Department, University of California at San Diego, La Jolle, CA 92093

Abstract.

Experiments have found that freely relaxing turbulence in inviscid, incompressible
two-dimensional Euler flows can self-organize into ordered structures - vortex crystals,
in which a number N, ~ 2 — 20 of strong vortices form stable geometrical patterns in
a low vorticity background. In this paper we show that N, can be roughly predicted
from the flows in the early stage of the turbulence relaxation.

Turbulence in inviscid, incompressible, two dimensional (2D) fluids is applicable
to large scale geophysical and astrophysical flows. These fluids evolve according to
the 2D Euler equations: dw +v-Vw =0, w =2 - V X v, where v(r,t) and w(r, )
are the velocity and vorticity fields of the flow, respectively, and 2 is the unit vector
perpendicular to the plane of the flow. The velocity and the vorticity are related
via the stream function ¥(r,t): v =V X ¢z, V¢ = —w.

Over the years, numerical simulations and experiments have found that, from
a large variety of unstable initial conditions, 2D Euler flows quickly organize into
large numbers of strong vortices (intense patches of vorticity) and a filamentary,
low vorticity background. Subsequently, the turbulence is dominated by the chaotic
mutual advection of the strong vortices and mergers of like sign strong vortices. The
merger of the strong vortices occurs when two strong vortices come close to each
other, and often goes on until only a single strong vortex or a pair of opposite
signed strong vortices remains {1,2}.

However, experiments with a magnetized pure electron column have discovered
that 2 — 20 strong vortices can remain in the relaxed states of the 2D turbulence.
Moreover, the vortices settle down to geometric equilibrium patterns in a low vor-
ticity background, which last about 10* rotations of the flow, until the strong vor-
tices are dissipated by non-ideal effects. These equilibrium states are called vortex
crystals [3,4].

Experimentally, the formation of the vortex crystals depends on delicate control
of the initial vorticity distribution of the flow. Slight variations of the initial con-
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dition can result in vortex crystals with different numbers of strong vortices, and
from some initial conditions, no vortex crystal forms.

In this paper we show that the formation of vortex crystal and the number
N, of the strong vortices remaining in them can be roughly predicted from the
characteristics of the turbulent flows in their early stages of evolution. We will
focus on flows with single sign of vorticity, subject to a free-slip circular boundary.

Our analysis relies on the following physical picture, supported by recent vortex-
in-cell simulations [5]. Vortex crystals form because of the interaction between
the strong vortices and the low vorticity background. While advecting chaotically
and merging occasionally with each other, the strong vortices ergodically mix the
background, causing the fluid entropy of the background to increase. The mixing
of the background, in return, "cools” the chaotic motions of the strong vortices
and leads to the formation of vortex crystal states. The physics of cooling, while
quite complex, is similar in spirit to that of a marble rolling across the floor: the
marble slows to a stop because the entropy of the floor is increased, implying an
irreversible flow of energy from the marble to the floor.

This mechanism of vortex crystal formation is verified by the close agreement
between the observed vortex crystal states and the predictions of regional maximum
fluid entropy (RMFE) theory [6], which calculates the maximum fluid entropy states
of the background. Given the conserved quantities of the flow and the number of the
strong vortices as well as their vorticity profiles, the theory predicts the equilibrium
patterns of the strong vortices and the coarse-grained vorticity distribution of the
background. The predictions compare very well with the observed vortex crystals.

Quantitatively, this physical picture suggests that if the average time 7,, between
merger events becomes longer than the average time 7, for cooling the chaotic
motions of the strong vortices, merger stops and a vortex crystal forms. Then, by
estimating 7,,, and 7, from the turbulent flow, we are able to predict the formation
of the vortex crystals and the number of the strong vortices in them.

We estimate 7,,, from the time evolution N(¢) of the number of the strong vor-
tices in the early stage of the turbulent evolution. Numerical simulations [1] and
experiments [2] have found that N(¢) evolves according to a power law:

t\ "¢

NO =N (1) M
0

where £ > 0 is a constant. Other quantities associated with the strong vortices also

evolve in time according to power laws. For example, the average circulation of the

strong vortices, T',(t), increases in time as

) =Tulto) (1) ®

where n > 0 is a constant. Although there are some heuristic arguments for the
power law behavior of N(t) [8], this behavior remains as an empirical fact. The
punctuated scaling theory, which is based on a merger model that conserves the
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total energy and the maximum vorticity of the strong vortices, suggests that § =
0.70 ~ 0.75, and n = 0.5 [7]. Although the theory is supported by some numerical
calculations [9] and experiments done with a thin stratified layer of electrolyte [10],
experiments that observed vortex crystals [3] have shown that these exponents
can take different values in different flow evolutions. In this work, we take Egs.
(1) and (2) as empirical laws, and measure the exponents from experiments and
simulations.

The time scale 7;, between mergers is given by the time required for the number
of the strong vortices to decrease by one: AN = —1. For large N, AN/7, =
—1/7m == dN(t)/dt = —EN(to)(t/to) ™ ¢ /to, where in the last step Eq.(1) is used.

Therefore,
(=1) to ( t >1+E
T & - = — . 3

b EN(to) \to ®)

To estimate the cooling time scale 7., we recall that mixing of the background
increases the fluid entropy of the background and drives the strong vortices towards
equilibrium patterns. As the background is mixed and the strong vortices approach
equilibrium positions, it becomes unlikely that a fluctuation will drive the two
strong vortices sufficiently close together to merge. Therefore, we estimate 7. as
the time scale to mix the background.

The mixing in turbulent fluids is in general very complicated and hard to analyze.
However, chaotic advection, or the chaotic motion of passive scalars in a prescribed
flow that retains the essence of the turbulent flow, can often provide insights into
the nature of the turbulent mixing {12]. In our case, since the strong vortices,
which are intense in vorticity and small in radius, are the primary mixers of the
background, we can study the chaotic advection of passive scalars in the fields of
point vortices to understand the mixing of the background.

The velocity of a passive scalar in the flow field of N point vortices is given by
dz/dt = 8, (z,y,1) /0y, dy/dt = —0v,(z,y,1)/dx, where 1,(z,y,t) is the stream
function due to the point vortices and depends on time due to the motion of the
point vortices. Observe that 1, can be regarded as the Hamiltonian for a particle
in one dimensional motion, with z(¢) and y(t) being the generalized coordinate and
momentum. Then the trajectory of the passive scalar is the phase space trajectory
of the particle. The Hamiltonian structure for the motion of the passive scalar
enables us to apply many results from the study of the dynamical systems to the
chaotic advection problem [12].

If the point vortices are in equilibrium positions, 9, is time independent in the
rotating frame of the equilibrium. Then, the trajectory of the passive scalar is
integrable and non-chaotic. The trajectory can go around one of the point vortices,
or a number of them, depending on the initial position. The initial positions for
different types of trajectories are separated by separatrices. On the other hand,
if the strong vortices are completely out of equilibrium, their motions are chaotic.
Then the trajectory of the passive scalar is also chaotic starting from all of the
initial positions except those very close to the strong vortices [13].
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The trajectory of a passive scalar is chaotic if its Lyapunov exponent ) is positive,
non-chaotic otherwise. The Lyapunov exponent of a trajectory is defined in terms
of the difference dr(t) = ry(t) — r2(t) of two infinitesimally close trajectories, r;(t)
and ra(t): A = limye0 In |61 (2)]/|6r(0)|/t.

A collection of passive scalars occupying a small region in the stochastic region
will spread out over the whole chaotic region exponentially in time. The rate of
this complete randomization is given by the average of the Lyapunov exponents
of the passive scalars in the chaotic region, since the Lyapunov exponents are the
rates of the exponential divergence of trajectories of passive scalars initially placed
closely.

It is difficult to obtain an analytic value for the average Lyapunov exponent X in
the stochastic region. However, when the point vortices have approximately equal
circulations and their motions are chaotic in a region of area A, the main physical
quantities that determine X is the average circulation I', of the point vortices and
the average distance D = /A/N between the nearby point vortices. Dimensional
analysis then gives

< | I
A= aﬁ = a;, (4)

where « is a constant, and I'y = NT, is the total circulation of the point vortices.

To check the validity of Eq.(4), we have calculated A, with the method proposed
in Ref. [14], in the ficld of N point vortices with circulations 47. The point vortices
are randomly placed initially in a circular region. We vary both N (5 ~ 50) and
the radius of the circular region (0.2 ~ 0.8). The result confirms Eq.(4), with
a = 0.031.

With the estimation of the Lyapunov exponent for the passive scalars in the fields
of the point vortices, the complete randomization time of the background can be
estimated as

1 A
37 oty (5)

Te =~

where A is now identified as the area occupied by of the background flow, and 'y
as the total circulation of the strong vortices.

To show that 7, as given in Eq.(5) is indeed the time scale on which the mergers
of the strong vortices tend to stop, we have performed several vortex-in-cell simula-
tions, an example of which is shown in Fig.1. In the simulation, five identical point
vortices with total circulation 0.5 are randomly distributed within a ring vorticity
with inner radius 0.4 and width 0.05. The total circulation of the flow is 1. In
Fig.1, we plot the flow evolution as well as the evolution of the minimum distance
between the point vortices. For the flow, 7. = 32.43 as evaluated by Eq.(5), with
A = 0.4%7. This value is indicated with an arrow in the figure. The figure shows
after t = 7., the lower limit for the minimum distances steadily increases, and close
encounters between the point vortices are prohibited.
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FIGURE 1. A vortex-in-cell simulation in which five identical point vortices with total circu-
lation 0.5 randomly distributed in a ring vorticity with inner radius 0.4 and width 0.05. The
total circulation of the flow is 1. The flow evolution is display on the top rows. In the figure, the
minimum distance between the point vortices is plotted against time. The arrow in the figure
indicates the complete randomization time 7, as evaluated by Eq.(5), with A = 0.4%7.

The randomization time 7, depends on the total circulation of the strong vortices,
which decreases as the strong vortices merge. From Egs.(1) and (2), we obtain
T'r(t) = N(to)Ta(to)(t/to)™¢. Therefore, from Eq.(5) we obtain

A t\§
Te ™ N (to)alto) (EE) ' (6)

Equation (6) shows that 7, grows in time more slowly than 7, since n > 0 (cf.
Eq.(3)). Therefore, starting from 7,, < 7, 7, will eventually catch up with 7. at
t = t., and mergers of the strong vortices stop. Here . is found by setting 7. & 7,
and from Egs. (3) and (6) we arrive at

.N €A -
t. =1y (m) . (7)
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FIGURE 2. Flow evolution in a typical run of the simulation. Images: Vorticity distributions
at three different times. Plot: The evolution of the number of the strong vortices.

Accordingly, the number of the strong vortices in the vortex crystals is obtained
by setting t = ¢, in Eq.(1):

atOFa (to) ) 1_‘5;’?

> ®)

Nc ~ N(to) (
This equation shows that in order to form vortex crystals with many surviving
strong vortices, initially the flow should have a large number of strong vortices
with large average circulation, concentrated in a small area.

The prediction of Eq.(8) is checked with both experiments with pure electron
columns [3] and vortex-in-cell simulations. The exponents £, 7, as well as quantities
N,T, and A are measured in the power law regime of the turbulent relaxation. Then
each flow in this regime predicts N, according to Eq.(8).

In the simulation, initial conditions are generated by randomly distributing in a
circular region a large number of Gaussian vortices with a given radius and random
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FIGURE 3. Comparison of the predicted number N, of the strong vortices in the vortex crystals
with the N, of the experiments and the simulations. Each data point represents a particular
evolution of the turbulent flow. The value for the predicted N, for each evolution is obtained by
averaging the predictions at different times in the power law regime.

maximum vorticity. Within one rotation time of the flow, a large number of strong
vortices and a low vorticity background form from this kind of initial distribution.
Generally, the number of the strong vortices formed increases with the decrease
of the radius of the Gaussian vortices. In Fig.2, we show a typical run of the
simulation. The vorticity distributions at three times and the evolution of the
number of the strong vortices are displayed. As expected from Eq.(8), a vortex
crystal with a large number of strong vortices forms.

The prediction of Eq.(8) agrees reasonably well with the experiments and the
simulations. This is shown in Fig.3, in which we plot the predicted N, averaged
over the power law region of N(t), against the observed N, for the experiments
the simulations. The scattering of the data, however, is quite large. This might be
expected, given that the process of vortex crystal formation is chaotic. Furthermore,
our estimation of 7. is not yet a detailed theory, and the assumptions that we made,
i.e. the strong vortices have approximately the same size and the background can
be treated as passive scalars, might not be well satisfied for some of the experiments
and the simulations. Nevertheless, the prediction at least clearly distinguishes the
characteristics of the flows that form vortex crystals with many strong vortices from
that of the flows that form no vortex crystals.

Until now, vortex crystals have been only observed in the turbulent flows with
a single sign of vorticity, subject to a circular, free-slip boundary condition. It is
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interesting to know if vortex crystals can form in more general cases with both
signs of vorticity and/or different boundary conditions. As we have shown in this
paper, one requirement is that there are many strong vortices in the initial stages
of the turbulent flow. Our theory also suggests that two conditions are crucial for
vortex crystal formation. The first condition is that there should be stable RMFE
states. Calculations similar to those we have done in Ref. [6] should be carried
out to reveal that ordered, stable structures for the strong vortices can emerge by
maximization of the fluid entropy of the low vorticity background. The second
condition is that the mixing time scale 7, of the background must be sufficiently
fast. This can be investigated with the chaotic advection of the point vortices, as
we have done in this paper. It is conceivable that the mixing time scale can be very
different depending on the characteristics of the turbulent flow. For example, if
there are approximately equal number of similar-sized positive and negative strong
vortices, the mixing of the background may not be as efficient as the case we have
studied in this paper, since the opposite signed strong vortices tend to form dipole
pairs and hence at least partially cancel each other’s mixing ability.

This work was supported by NSF grant PHY-9876999 and ONR grant
NO.N00014-96-0239. We thank Dr. K. S. Fine for providing the experimental
data.
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A Selection of Experiments Performed
with The Photocathode Trap

D. Durkin!, L. Zimmerman, and J. Fajans?

Department of Physics
University of California, Berkeley
Berkeley, California, 94720-7300

Abstract. Electrons confined within a Malmberg-Penning trap are a valuable experi-
mental tool with which to study two-dimensional (2D) fluid phenomena. We developed
a cesium antimonide photocathode electron source that can generate more complicated
initial distributions than the traditional thermionic sources. We present a selection of
experiments performed with The Photocathode Trap illustrating its capabilities, hope-
fully thereby stimulating future collaborations.

Strongly magnetized electron columns are a valuable experimental tool with
which to study two-dimensional (2D) fluid phenomena. “Real” 2D fluids are diffi-
cult to manipulate, difficult to diagnose, hindered by three-dimensional boundary
effects, and are perturbed by viscosity; therefore, most 2D fluid “experiments” have
been computational.

Under certain experimental conditions, the motion of a strongly magnetized elec-
tron column is bounce-averaged along the magnetic field and the column behaves
two-dimensionally. A system of columns evolves by the interaction with its self-
electric field (E x B drift), and is described by the 2D Drift-Poisson equations.
Because these equations are identical to the 2D Euler equations describing an ideal
2D fluid, both systems evolve identically. The vorticity of the electron “fluid” is
proportional to the electron density; hence, a strongly magnetized electron column
is equivalent to a 2D fluid vortex [1].

The electrons are confined within a Malmberg-Penning trap using static magnetic
and electric fields [2]. A simple trap, diagrammed in Fig. 1, consists of three coaxial,
conducting cylinders contained within a high vacuum chamber. Radial confinement
is provided by an axial magnetic field, about which the electrons gyrate. Axial
confinement is provided by negatively biasing the end cylinders with respect to
the central one, in which the electrons bounce back and forth. The electrons are
destructively imaged by grounding one end cylinder, allowing them to stream along

1 durkin@socrates.berkeley.edu
2) joel@physics.berkeley.edu
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FIGURE 1. The Photocathode Trap.

the magnetic field and onto a phosphor screen, producing a light image. This image
is then detected by a CCD camera.

We inject the electrons with a photocathode. To inject a desired 2D electron
density distribution, we make a slide of the distribution using a printer with trans-
parency film. The slide is illuminated with white light and projected onto the
photocathode. Electrons are emitted only where there is light, so the initial distri-
bution corresponds to the light image.

We selected cesium antimonide (Cs3Sb) as the photoemitter because of its fairly
strong quantum yield in the visible (1 to 5 % for a semitransparent photocathode),
its reputed ease of fabrication (involves only two chemicals), and its robustness
(tolerates vacuums below 107® Torr) [3]. The fabrication of Cs3Sb consists of two
steps: 1) A layer of antimony (Sb) is deposited onto a substrate; 2) The substrate
is exposed to cesium (Cs) vapor while under vacuum and between 120 and 140 °C.
Though the initial antimony layer can be exposed to atmosphere, Cs3Sb cannot;
therefore, the release of cesium must occur in situ (see Fig. 1).

The photocathode can inject circular electron columns up to several Debye
lengths in radius, with densities of 3 x 107 cm™ and temperatures of 3 eV, cor-
responding to Debye lengths of approximately 0.2 cm (these values depend on the
light source’s intensity, the cathode’s voltage, and the photocathode’s quantum ef-
ficiency). Unlike thermionic sources, it cannot inject columns many Debye lengths
in radius.

The photocathode’s advantage over thermionic sources is its ability to inject
more complicated electron distributions, as illustrated by the following selection of
experiments [4-7]:
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Advisor 0.01 ms 0.10ms 1.00 ms

FIGURE 2. The Advisor Instability: Everyone can have an instability with the photocathode.

0.01 ms 0.10 ms 1.00 ms 10.00 ms

FIGURE 3. Equipotential Cathode Injections: The injected electron distribution versus the
inject time for a -20 V equipotential cathode and a column radius of 0.50 ¢m, showing that
electrons are being trapped during the injection phase. For 0.01 ms, the distribution is centrally
peaked. For 0.10 ms, it is flat-topped. For 1.00 ms, it is slightly hollow and there isam =7
diocotron instability present. For 10.00 ms, it is very hollow with lots of structure. A hollow
distribution is predicted for an equipotential cathode [8].
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FIGURE 4. N Vortices Arranged in a Ring: An example of these patterns is shown for N =7,

and the experimental lifetimes demonstrate excellent agreement with Havelock’s theory (dashed
line) [9].
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FIGURE 5. N Vortices Arranged in a Ring with a Central Vortex: The strength of the central
vortex with respect to the ring vortices, v, is controlled by varying its radius, as demonstrated herc
for N = 10+ 1. The experimental lifetimes agree well with theory (dashed line) {10]. Experiments
have been performed for N =341 to 104 1.
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FIGURE 6. Campbell and Zifl Patterns: Campbell and Ziff have generated a catalog of stable
2D vortex patterns for N = 1 to 30 and for certain N up to 217 [11]. Here are three of those
patterns; all are stable, as predicted.
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FIGURE 7. Triangular Numbers of Vortices: Patterns of triangular numbers of vortices,
N =1+6(1+2+3+...), arc interesting becanse an infinite number of vortices favors a
triangular lattice. The patterns presented here are also found in Campbell and Ziff’s catalog, and
experimentally they survive for over 100 bulk rotations.
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FIGURE 8. The Jin 6: This pattern emerged from a maximum entropy theory developed by
Jin and Dubin to predict the evolution of stable vortex patterns from the turbulent decay of an
electron system [12]. This research inspired Coppa to analytically study the stability of two sets
of N vortices with strengths 3 and 42 arranged in two rings with radii r; and 72 in a boundary.
If 7, = y2 and r; = 0.66, then a stable pattern will also have r = 0.49 (from Coppa’s formulas),
as shown in (a); experimentally, it lives for over 800 bulk rotations. We also experimented with
a smaller version: 71 = 0.25 and o = (0.49/0.66)(0.25) = 0.19. The initial state in (b) exhibits
a curious breathing motion around the stable N = 6 hexagon. The patterns oscillate between
near-triangular and near-hexagonal states, as shown in (b)-(e). One breath takes approximately
1.5 bulk rotations and they continue for over 1000 bulk rotations.

(a) (b)

® 0 0 9o

FIGURE 9. 3 Vortices in a Line: The system in (a) is integrable and unstable: the three
equilibria are 123, 213, and 132 [14]. (b) depicts the motion we observe in the reference frame
rotating with the pattern: vortices 1 and 2 swap positions continually for 100 bulk rotations.
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(a)

®

FIGURE 10. “Negative” Vorticity: In (a), we illustrate the possibility of simulating “ncgative”
vorticity with just electrons by having a nniform background density, corresponding to a uni-
form bulk rotation; regions with twice the density (clumps) should behave like positive vorticity,
whereas regions with no density (holes) should behave like negative vorticity. (b) shows an exper-
imental image of 3 holes in a uniform background (the lighter region on the outside edge, from 2
to 7 o'clock, is a defect in the phosphor).
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2-D Interaction of Discrete Electron Vortices

Y. Kiwamoto, A. Mohri, K. Ito, A. Sanpei and T. Yuyama

Depariment of Fundamental Sciences, Faculty of Integrated Human Studies,
Kyoto University, Kyoto 606, Japan

Abstract. We experimentally study 2-dimensional interaction among discrete vortices and
broad vorticity distribution. Here we report a few topics from our initial results. We observe
long-lasting orbital motion of discrete vortices in vacuum, while a rapid re-organization
occurs in the spatial distribution of vorticity when a discrete vortex is immersed in an
extended distribution of the background vorticity.

INTRODUCTION

Nonneutral plasmas not only provide excellent means of studying 2-dimensional (2D)
dynamics of Euler fluid which has been a subject of extensive studies over 100 years but
also exhibit varieties of collisionless and collective processes that make the dynamics
physically more colorful and rich. One interesting aspect is interaction among many
vortex strings that is described by Hamiltonian equations in the limit of zero cross-
section but leads to mutual merging and reorganization of spatial distribution in the
other limit. Work in this field includes single vortex motion in vacuum (1) or with
externally applied shear field (2), merging process between two vortices (3), and
relaxation of spontaneously-generated many vortices to a quasi-steady crystallized
state (4). One drawback with previous experiments is that the initial conditions are not
sufficiently controllable for studying dynamics involving two vortices or more.

In this paper we describe a new scheme of vortex generation and report some new
results, observed with this configuration, that include 2D dynamics of point vortices in
vacuum compared with the Hamiltonian model and dynamics of a discrete vortex
immersed in a background vorticity.

EXPERIMENTAL DEVICE

We have produced an ensemble of many point vortices of nonneutral electron plasma
in a cylindrical trap. The core part is an array of cathodes, as shown in Fig.1, each of
which consists of impregnated tungsten surface (I.lmm in diam) supported by
cylindrical body with outer diameter of 3.1 mm. The body consists of double shells for
thermal insulation, and the outer shell is mechanically supported in an array of holes
drilled in a ceramics plate. The emitters are heated with insulated filaments. The array
of the emitters faces with a 1 mm-apart anode plate with mesh-covered extraction holes

CP498, Non-Neutral Plasma Physics 111, edited by John J. Bollinger, et al.
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FIGURE 1. Configuration of trap and electron emitter.

of 2.6 mm. The acceleration voltage applied to each cathode is adjustable
independently with respect to the grounded anode plate, so that we can choose the
number, location and the strength of the vortices by selecting cathodes and controlling
their emission currents.

The electron beams are injected from a weaker magnetic field side (with mirror ratio of
5.27) to form point vortices with initial diameter of 0.44 mm and length L = 235 mm at
prescribed radial positions with total number changeable from 1 to 19. The vortices are
located at the vertices in the network of triangles with equal side-length of 5.2 mm. The
strength of homogeneous magnetic field B is varied up to 0.048 T. The cylindrical
conducting side wall at 32 mm from the machine axis is longitudinally divided into 11
rings with a uniformly separation of 24 mm. The biasing voltage on each ring can be
controlled externally so that the potential distribution in the cylinder is tailored to form
a spheroidal plasma (5). It is evenly grounded in this experiment to assure equal lengths
of the vortex strings. Two 54 mm long tubes with the same inner diameter bound the
rings at both ends, and are biased negative so as to plug electrons axially. Under these
conditions the machine serves as a Malmberg-trap (6).

The plasma is produced repeatedly in pulsed operation by reducing the potential
barrier at each end sequentially. The diagnoses are made destructively by dumping the
trapped electrons through the tube at the far end from the electron injector onto a
conductive phosphor plate that serves both as a Faraday-cup collecting all electrons
within its circular cross-section of 50 mm in diam. and as an indicator of the luminosity
distribution detected with a monitoring CCD camera. The latter corresponds to the
distribution of the line-integrated vorticity. In the present study the reproducibility is
within a few percents in terms of the total charge collected on the Faraday-cup.

DISCRETE VORTEX IN VACUUM

We study orbital motions of discrete vortices in vacuum, which are described in a
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Hamiltonian form. A concrete expression of the location (x,,y,) ofa vortex « is given
in the complex plane by,

dz, d .
-ftg.=_l{ Z£Z) +Q(|Za|)za}’ M

”

where z, = x,, + iy, . The first term in the right hand side is described as, ,

K

g b4 z R

w(z)= ) =— ln(-—— 1]—111(-——-—*-] . )
% 2.7'[{ Z‘; R Zﬁ

Here the first term stands for effects from other vortices, and the second from the image

charges induced on the conductive wall at k&l = R. The circulation ¥ B of vortex B is
related to the plasma density by the following relation,

. 3
W, gBL ®)
The integration is made over the cross-section of each vortex. The rotational drive
forced by static radial electric field associated with confining potential at the ends is

given by Quzal)
In the case of a single vortex put in vacuum, the first term in eq.(2) disappears, and

only the interaction with its image and the external drive are present. From eq.(1) the

vortex is known to show a circular orbit with the angular frequency of
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It agrees quite well with the bounce-averaged E x B rotation velocity of electrons that is
calculated for actual potential distribution in vacuum. Since eq. (1) shows a good
agreement with the observations, it may be developed as a convenient method for
experimental determination of the vacuum electric field.

Dynamics of two or more interacting vortices has been examined in the same way.
The initial trajectory of each vortex agrees with the calculated results of eq.(1), though
the discrepancies increase after a few rotation periods probably due to small differences
in the initial conditions. Details of the examinations will be reported elsewhere. An
important statement at this stage is that the discrete vortices interacting in the vacuum
continue to orbit around without merging for a long period comparable to the coulomb
collision time. However the trajectories of the vortices are observed quite different once
the space among the vortices are filled with a continuous distribution of an electron
plasma that forms a background vorticity as described below.

DISCRETE VORTEX IN BACKGROUND VORTICITY

We produce the background plasma by stacking electrons which are injected
repeatedly from two cathodes, one on the machine axis and the other at the periphery
(7=10.4 mm). The stacking includes pulsed filling of electrons along the magnetic field
lines and radial transport which are repeated up to a few hundreds times until the
electrons form a moderate radial density distribution. We wait typically one more
second for the distribution to become broad enough and axisymmetric before injection
of discrete vortex under study.

Figures 3 shows the dynamics of a discrete vortex that is produced initially at
different radial positions, r = 9, 8 and 5 mm with N, = (2.6, 1.3, 24)x 10,
respectively . The electron number of the background plasma, N, = (2.5 - 3.0) x 108, is
one order of magnitude higher than N, in the discrete vortex.

In each panel the radius ( distance from the center of background vortex, circle) and
the angular velocity (square) of the discrete vortex are plotted as a function of time
after the injection (# = 10 us), and the corresponding quantities without the background
plasma (open symbols) are plotted for comparison. While the vortex keeps a steady
orbit in vacuum for more than 2 ms, the background vorticity increases the rotating
velocity of the discrete vortex and attracts it toward the center. The discrete vortex
either reaches the center of the background quickly to form a peaked distribution of
vorticity or stagnates at a close distance to the center to be shortly dispersed into the
background while rotating. In either case the identity of the discrete vortex is lost
within a time of a few rotations around the center that is shorter than an orbiting period
in vacuum.
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FIGURE 3. Orbit of a discrete vortex in a background vorticity. Distance from the background center
and the rotation velocity is plotted as a function of time. Vortex is produced at 10 ps.

DISCUSSION

The observation indicates that some collective interaction plays an essential role in the
rapid merging. Excitation of waves, such as diocotron mode, in the background may

enhance the interaction (7), though we do not have an adequate theoretical model
applicable to the present experiment,

Very recently Schecter and Dubin have proposed a theoretical model of vortex
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motion in a background vorticity gradient (8). For present analysis we start from
eq.(6) of ref.8, neglecting the logarithmic factor of order 1. We approximate that the

density distribution of the background electrons as n,(r) = (Nb/nsz)exp(—rzl bz),
and introduce characteristic time Ty = soBLbzleNv. Employing normalized radius

p=r/b and time 7 = #fxy, we can write the equation for the location of the discrete
vortex as,

a_reele’) 0 se)

= arctanl - —=
di ~ xS(p) \"2ny )
Here the gradient of the background vorticity is given by C'o - —2pexp(-—p2 )/nytob,

and its shear by |A|=-S(p)/myvy, where S(p)= (1 + l/pz)c:xp(—pz)—l/p2 . The
contribution ofN,, remains only in the time-dependent termas y = N,/N,,.

The equation can be solved only numerically. With experimental parameters such
that L=0235m, b =~00lm and N, =2 x 107, therefore 1 = 3.1pus, we calculate
the radial position of the discrete vortex as a function of time. Figure 4 shows the
results for vortex starting at 5 mm and 10 mm from the center of the background that
consists of different number of electrons such that y = 1/20, 110, 1/5. The trajectory
curve shifts upward as N, decreases, namely the merging speed of the discrete vortex
increases as the vorticity of the background increases. We further notice that the
calculated time scale is very close to the experimental one as evaluated from the data
shown in FIG.3.

Though the main part of our new observation appears to be described well by the
fairly simplified theoretical model, the bounced trajectory as shown in the middle of
FIG.3 cannot be obtained from eq.(5). Since radial derivatives come in the original
equation, a slight modification in the density profile of the background plasma may lead
to the bouncing. More detailed density distribution in the background should be
determined experimentally for full understanding of the process.

In the workshop we also have reported observation that two or more discrete
vortices, which remain orbiting around separately for a sufficiently long time in vacuum,
merge very rapidly or form a quasi-steady structure in the presence of the background
vorticity. These observations strengthen the statement that the background vorticity
plays an essential role in the evolution of a turbulent state which consists of strong
vortices and weak vorticity distribution that is smoothed out in coarse-graining.

In summary we have reported experimental observation of 2-dimensional dynamics of
discrete electron vortices both in vacuum and in background vorticity, demonstrating
very strong influence of the background vorticity in the evolution of the spatial
structure of the guiding-center fluid.

G)
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Vortex Motion Driven by a Background
Vorticity Gradient *

David A. Schecter and Daniel H.E. Dubin

Physics Department
University of California at San Diego, La Jolla, CA 92093

Abstract. The motion of self-trapped vortices on a background vorticity gradient
is examined numerically and analytically. The vortices act to level the local back-
ground vorticity gradient. Conservation of momentum dictates that positive vortices
(“clumps”) and negative vortices (“holes”) react oppositely: clumps move up the gra-
dient whereas holes move down the gradient. A linear analysis gives the trajectory of
small clumps and holes that rotate against the local shear. Prograde clumps and holes
are always nonlinear, and move along the gradient at a slower rate. This rate vanishes
when the background shear is sufficiently large.

Self-trapped vortices can be clumps (vorticity excesses) or holes (vorticity
deficits). The interaction of clumps and holes with a background vorticity gradient
- often plays an important role in 2D hydrodynamics. For example, the decay of 2D
turbulence can be controlled by the slow drift of holes down a vorticity gradient {1].
The motion of hurricanes on a rotating planet is influenced by the north-south gra-
dient in the Coriolis parameter, which can be thought of as a (potential) vorticity
gradient [2-7].

Here, we calculate the rate at which clumps and holes ascend or descend a back-
ground vorticity gradient under the conditions that (i) the vortices are point-like
and (ii) the background flow has strong shear. While point-like vortices and strong
background shear may be rare in geophysical settings, they are common in nonneu-
tral plasmas [1,8] and may also be found on planets like Jupiter that have intense
storms in strong zonal winds [9].

Clumps and holes can be classified as prograde or retrograde, depending on
whether they rotate with or against the local background shear. We find that
a linear analysis gives the motion of a retrograde vortex. Prograde vortices are
always nonlinear and move at a slower rate that is given by a simple “mix-and-
move” estimate.

We neglect viscosity and consider flows that are governed by the 2D Euler equa-
tions:

1) This article is scheduled to appear in the 13 September 1999 issue of Physical Review Letters.
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gt—c+z7-v¢=o, T=2xVy, Vi=( 1)
Here, #(r,0,1t) is the velocity field, ¢((r,8,t) = 2 - V x ¥ is vorticity and %(r,8,1)
is a stream function. For analysis, the vorticity is decomposed into vortices (v)
and background (b): ¢ = ¢ + ¥ (. We focus on the case where (; is positive,
cylindrically symmetric and monotonically decreasing at ¢ = 0, making clumps
retrograde and holes prograde.

Figure 1 shows that clumps ascend a background vorticity gradient whereas holes
descend the gradient [2,3]. At ¢ =0, a clump and a hole are placed in an axisym-
metric background. The system is evolved with a vortex-in-cell (VIC) simulation
that numerically integrates Eq. (1) [10]. Eventually, the clump is driven to the
peak in background vorticity, whereas the hole is driven toward the minimum.
Such gradient-driven separation may help organize storms into bands of like-sign
vortices on planets with strong zonal winds, with holes in vorticity troughs and
clumps on vorticity peaks [9].

The opposite drifts of clumps and holes can be understood by momentum con-
servation. A similar argument has been used to explain the motion of phase-space
density clumps and holes in plasma turbulence [11]. We focus on cylindrical geom-
etry, where the flow conserves canonical angular momentum, Py = [ d?r {r®. The
analysis carries over to planar geometry, where linear momentum replaces Pp.

When there is just one vortex, P consists of two parts, a background contribution
and a vortex contribution: Py = T (r?), +T',r2. Here I', > 0 is the total circulation
of the background flow, T, is the vortex circulation, r, is the radial position of the
vortex and < 72 >, denotes the (;-weighted spatial average of 7. As indicated in
Figs. 1 and 2, both clumps and holes mix and flatten the (f-averaged) background
vorticity. As the background is levelled, < r? >, increases (since d(/dr < 0). To
conserve Py, a clump (T, > 0) must climb the background gradient and decrease
Ty, whereas a hole (I', < 0) must descend the gradient and increase 7.

We now determine the radial speed of the vortex. The vortex’s dominant trans-

T=0 1.5 7.5

M X3
vorticity

FIGURE 1. Gradient-driven radial separation of a clump (black dot) and hole (white dot) in a
circular shear flow.
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(b

hole
<0

FIGURE 2. Local mixing of the background increases < r?> >;. By conservation of Py, clumps
and holes react oppositely.

lational motion is rotation about the center of the background. We work in this
rotating frame, so the vortex is nearly stationary, and we define a local (z,y) coor-
dinate system centered at the vortex. In these coordinates, the initial velocity due
to the background is ¥ = AyZ near the vortex, where A is the shear, and the initial
background vorticity gradient is ! (where § points in the local r-direction).

Figure 3 shows the initial stream-lines in the vicinity of a retrograde clump (a)
and a prograde hole (b). The stagnation points in Fig. 3(a) are at a distance [
above and below the clump, where

1= /|T,/2nAl (2)

We treat the vortex and the disturbance that it generates as perturbations to the
initial shear-flow, and suppose that the Euler equation for the evolution of (; can
be linearized,

0 0 L,
{55 + Ay-é;] -0Cp = —¢, > ®3)

°2m z2 4 y2~
Here, 8¢, is the background vorticity perturbation, and we have used {, = I',6(Z).
This assumes that the vortex is point-like and moves slowly compared to the evo-
lution of the background. We have also neglected the velocity perturbation due to
6¢», assuming that it is negligible compared to the vortex velocity field.

Equation (3) can be solved by the method of characteristics, yielding

_Fv C{; [ ZZ + y2 ]

=4 2y |G- ApE T

4)
The radial velocity (7,) of the vortex is the y-component of the velocity perturbation
that develops at the origin. By summing the contributions to the velocity field from
each vorticity element, we obtain the following integral expression for 7, (here,
u=zfy):

Iy

oo 2
dy U u+1
y __{x) duu2+1ln[(u—At)2+1] (5)
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A small scale (!) and a large scale (L) cut-off are introduced to escape infinities
in the y-integral. The small scale cut-off describes the minimum distance from the
vortex at which nonlinearities in the background flow can be ignored. Thus, we
identify the small scale cut-off with ! [Eq. (2)], the size of the shaded trapping
region in Fig. 3(a). To determine the upper cut-off, we note that curvature in the
unperturbed flow can not be ignored for |y| X 7., where ry is the radial position of
the vortex. We therefore set L = ¢ - r,, where c is presumably O(1).

The integrals in Eq. (5) yield

Iy G

"7 a4l

In(L/1) - tan™" (T/2)

=+ BPln(cry/l) tan ' (T/2), (6)

where T = |A|t and +/- is for clumps/holes. For T' >> 1, the inverse tangent is
approximately 7/2 and 7, is approximately constant. Equation (6) gives a reason-
able scaling for the vortex speed: 7, increases with I, and (;, while it decreases as
the local shear A intensifies.

However, the validity of Eq. (6) rests on the accuracy of Eq. (3), which neglects
curvature in the unperturbed flow, the velocity perturbation due to 6¢;, motion of
the vortex, and all nonlinear terms. We now test Eq. (6) against a VIC simulation
that keeps all of these effects [10]. A linear simulation that incorporates the first
three effects is used as an independent check.

We consider the specific case where the initial background vorticity distribution
(¢p at t = 0) is given by

ar={57 T LG g

The rotation frequency of this background is Q,(r) = 0.5—0.417-r, for r < 0.8. We
assume that the flow is bounded by a circular wall with radius R,, = 1, and that

(b)

FIGURE 3. Initial stream lines for a retrograde clump (a) and a prograde hole (b) in a shear
flow 7 = Ayz, A> 0.
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there is free slip at the wall (¢ = 0 at R,,). The background chosen here represents
a larger class, where the radial derivatives ¢/ and €2} vary slowly with .

The linear simulation integrates the following set of equations. The vorticity
perturbation is expanded as a Fourier series in the polar angle 6,

6 = {Zj ZM(r,1) - ™. (8)

m—=-—0oo

The linear evolution of Z(™ is given by

a . m : CI m m
[5{ +zon(r)] -2 = 2m~r‘1 [\Ilf, ) + ¢l )] . (9)
Here, ¥, and ¥, are Fourier coefficients of the vortex stream function and

the stream function of 4¢;. The vortex moves radially according to 7, =
— 061, /00), ;*, which can be written

00
o= 25 m-Im [wf™ (7, t)em?] . (10)

Ty m=1

The angular velocity of the vortex is given by the unperturbed flow,
by = 2,(ry). (11)

In the linear simulation, Poisson’s equation is solved for \Ilf,m) to second order
accuracy in the radial grid-point spacing (~ R,/2000). The vortex position 7,
and the Fourier coefficients {Z (m)} are evolved with third-order Adams-Bashforth

steps (~ 10® steps per background rotation). The number of (excited) Fourier
components is made finite in the linear simulation by setting ¥{™ = 0 for m >
Ve r,(t)/1(t). This wave-number is the inverse of the horizontal width (in radians)
of the trapping region (TR) that is shaded in Fig. 3(a). Neglecting larger m amounts
to neglecting the contribution to 7, from the TR, where the fluid is rapidly (T < 1)
mixed by the vortex. Although the TR is defined only for a retrograde vortex, we
try the same cut-off for a prograde vortex.

Figure 4 shows the linear (dashed line) and the VIC (solid line) computations
of r,(t) for a retrograde clump and a prograde hole of initial strength I/r, = 0.12.
The ratio I/r, is called the “vortex strength” because it is a dimensionless measure
of the vortex intensity relative to the background shear A = —r,§.(r,). The linear
simulation of clump motion is in good agreement with the VIC simulation. In
contrast, the hole moves much slower in the VIC simulation than in the linear
simulation. The results for 6,(¢) (not shown) give similar agreement for clumps
and disagreement for holes.

Consider first the motion of the retrograde clump. It is apparent from Fig. 4
that the clump rapidly accelerates to a constant radial speed. Equation (6) offers
a value for this speed, up to a factor ¢ (of order 1) in the logarithm.
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FIGURE 4. Radial position of vortex versus time T’ = 7, (0)|Q,|t for linear (dashed) and VIC
(solid) simulations.

Rather than set ¢ = 1 on physical grounds, we use a precise value for ¢ that can
be obtained by a standard (but lengthy) analysis of Egs. (9-11). Unlike the previous
derivation of Eq. (6), this analysis incorporates curvature of the unperturbed flow,
and the velocity perturbation due to 6. However, the calculation still makes use
of an unperturbed orbit approximation: 4, is evolved with the vortex fixed on a
circular orbit [0, = Q,(7y)t], and 7, is taken to be the radial velocity perturbation
at the vortex center. Wave-numbers m > /e - 7, /I are neglected, as in the linear
simulation. The analysis yields a time-asymptotic value for 7, that converges to
Eq. (6) in the limit of small I/r,. In general, the factor ¢ depends on r, and the
form of {,(r). In our example [Eq. (7)], the expression for 7, reduces to Eq. (6) for
I/r, S 0.1, with ¢ = 0.43 for 7, S 0.7.

Figure 5 shows that the radial speed of the clump converges to linear theory
[Eq. (6)] as the clump strength /7, approaches zero. All clumps start at r, = 0.4
and the background is always given by Eq. (7). We vary I/r, by changing I, only.
We obtain 7, from a straight-line fit to r, vs. t, as r, decreases from 0.375 to 0.35.
In the plot, 7, is normalized to (!r2. Both (/r? and the clump strength [/r, are
evaluated at r, = 0.363. The diamonds correspond to linear simulations and each
‘X’ corresponds to a VIC simulation. The solid curve is the T' — oo limit of Eq. (6),
with ¢ = 0.43. Both linear and VIC simulations converge to the solid curve as I/r,
tends to zero, indicating that the linear theory of Eq. (6) works well for retrograde
vortices.

We now consider the motion of prograde holes. The failure of linear theory
for holes can be understood by considering the stream lines in Fig. 3(b). Linear
theory breaks down for times greater than the orbital period 7 of a fluid particle
initially at = ~ I, the small length scale cut-off. The orbit of this particle is dashed.
Since 7 ~ I2/T',, T remains constant for holes as I', approaches zero, while the
time scale for the hole to move a distance of order ! becomes infinite. Thus, the
background perturbation around a small hole becomes nonlinear “instantaneously”
for all practical considerations. For clumps [Fig. 3(a)), this problem does not arise,
since fluid particles at 2 [ are not trapped around the vortex. Note that linear
theory fails for holes not because the hole has negative vorticity, but because the
hole is prograde with respect to the shear flow in our example [Eq. (7)}.
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The following “mix-and-move” argument gives a good estimate for the hole ve-
locity. A hole will attempt to mix a thin layer of background vorticity and move
a distance Ar in response [Fig. 2(b)]. This mixing layer (ML) corresponds to the
shaded region in Fig. 6, which shows the flow around a hole with I/r, = .05. The
ML extends from # = —7 to w and has an average radial width of ~ 2I. Suppose
that the hole levels the entire ML (d—<§;‘:3’l — 0) and has a negligible effect on fluid
outside the ML. Then, using conservation of Py, it can be shown that r, must in-
crease by Ar ~ I/ . To obtain the hole velocity also requires an estimate of the
time At required for the ML to flatten. The orbital speed of a trapped particle is
on average dominated by the background shear, so At is approximately 47 /1|Q2,].
The velocity of the hole is Ar/At, or equivalently

1
Ty ~ _EFC"" (12)

In Fig. 5, we compare Eq. (12) to the late time hole velocities that are observed
in the VIC simulations. As before, (, is given by Eq. (7) and the holes are located
initially at r, = 0.4. The plotted values of #, are from straight-line fits to r, vs. t,
as 1, increases from 0.5 to 0.6. The ratio !/, and the velocity normalization (/r2
are evaluated at r, = 0.55. The simulation velocities (denoted by O’s) are between
0.6 and 1.1 times the estimate, indicating that Eq. (12) is a reasonably accurate
approximation for the speed of prograde vortices.

The speed of a prograde hole down a vorticity gradient was recently measured in
an experiment [1). The speed (plotted in Fig. 5) is within a factor of 4 of Eq. (12),
which is at the level of estimated error. The slower radial drift that is measured in
the experiment may be due to the presence of multiple (2-3) holes, which changes
the structure of the mixing layer. Simulations with multiple holes also give lower
values of 7,.

The “mix-and-move” estimate assumes that the hole continuously moves into
new regions where the #-averaged background vorticity has a slope 45—552”- = (.
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FIGURE 6. Initial stream lines and mixing layer (shaded) for a prograde hole in a circular shear
flow [Eq. (7)].

However, if the ML moves with the hole, d—<g‘;2¢ shortly becomes zero at r,, and
the background and hole equilibrate in a phenomenon akin to the formation of a
BGK mode in a nonlinear plasma wave [12]. This will occur if At << #;, where ¢,
is the time for r, to increase by I and At is the mixing time. Using Eq. (12) for 7,
then implies that an equilibrium forms when ¢}/, << 1 [13].

For the simulation data in Fig. 5, (//Q2, = 3, so only a small fraction of the
ML moves with the hole [14]. However, by artificially increasing || in the VIC
simulation so that ¢/ /€2, is less than 1, one can examine hole motion when the “mix-
and-move” model breaks down. For ¢!/ equal to 3/4 and 3/8 (and I/r, = 0.2),
we find that the ML moves with the hole and an equilibrium is reached after a
small radial displacement (S .1r,).

Several issues remain. First, undamped modes or quasi-modes can affect vortex
motion if their phase velocities resonate with the vortex velocity. This is partic-
ularly important when the background has steps {15]. Also, when I/r, Z 1, our
linear treatment of retrograde vortex motion becomes invalid. Finally, our analysis
indicates that there is a critical value of ¢/ /), of order 1 for a prograde vortex and
smaller for a retrograde vortex, below which equilibria form and above which the
vortex continues to move. This nonlinear behavior merits further study.

The authors thank W.G. Flynn for his work on the VIC simulation and
C.F.Driscoll for help with interpreting the experiment. This research was sup-
ported by NSF grant PHY94-21318 and ONR grant N00014-96-1-0239.
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Abstract. The inviscid damping of an elliptical perturbation on a 2D vortex is ex-
amined experimentally and theoretically. The perturbation is generated by an impulse
at the wall. Initially, the quadrupole moment (ellipticity) of the perturbation decays
exponentially. This result is significant, since arbitrary perturbations need not decay
exponentially. The decay rate is given by a “Landau pole” of the equilibrium pro-
file. When the Landau damping is weak, the vorticity perturbation, in addition to the
quadrupole moment, behaves like an exponentially damped mode. This “quasi-mode”
is actually a wave-packet of exceptional continuum modes that decays as the continuum
modes disperse.

The inviscid relaxation of a 2D vortex after a weak external impulse is studied
experimentally and theoretically. In the experiments, the 2D fluid is a strongly
magnetized electron plasma in a cylindrical Penning trap, with wall radius R,, [1,2].
These electron plasmas have negligible viscosity and are governed approximately
by the 2D Euler equations:

oC/dt+7-V¢=0, T=2xVe, and V= 1)

Here, ¥(r,0,1) is the (E x B drift) velocity field in the plane perpendicular to the
trap-axis, ¢(r,0,t) = 2- V x ¥ is the vorticity, and ¢(r,6,1) is a stream function.
The boundary condition is ¥ = 0 at R,,.

EXPERIMENTS

Figure 1 shows two experiments that illustrate the process of “inviscid damp-
ing” [2-8]. In both experiments, we excite an elliptical (m = 2) perturbation on
an initially circular vortex. The initial vorticity distribution (,(r) and the initial
rotation frequency €2,(r) are monotonically decreasing functions of radius, making
the vortex stable [4]. In experiment (a), the impulse excites an undamped elliptical
mode, with frequency w. The fluid rotation is resonant with this mode at a radius
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FIGURE 1. Experiments. a) An undamped mode is excited, with critical radius r, outside
the vortex. b) Inviscid damping occurs when r. is inside the vortex. In both experiments, the
unperturbed vorticity {,{r) decreases monotonically with r. Time is measured in central rotation
periods: T =t - 2,(0)/2~.

rc, defined by 2Q,(r.) = w, and this critical radius lies outside the vortex. The
vortex in (b) is similar to the vortex in (a), except that {,(r) extends past the
critical radius r,. The excited mode is now damped by resonant mixing of vorticity
at r.. This inviscid damping is analogous to collisionless Landau damping, where
a compressional plasma wave decays due to its interaction with charged particles
that travel at the same velocity as the wave [4].

Figure 2 shows the evolution of the quadrupole moment @. of the perturbation
in Fig. 1(b). We define the quadrupole moment by the equation

Q= /0 o dr r36¢®(r, 1), (2)

where R, is the vortex radius, and 6¢® is the m = 2 Fourier component of the
vorticity perturbation. The amplitude of (), is a measure of ellipticity. Also plotted
in Fig. 2 is the theoretical linear response of the vortex to an externally applied
0(¢) impulse. Initially, there is good agreement between linear theory and the
experiment. However, after 5 rotations, the experiment diverges from linear theory,
and the amplitude of ), begins to oscillate. These nonlinear oscillations are due
to mixing of trapped vorticity at .. Eventually, the amplitude saturates, and the
vortex relaxes to a rotating “cat’s eyes” equilibrium [Fig. 1(b), far right].

For the remainder of this paper, we focus on the initial linear decay, which prop-
erly describes the evolution for arbitrarily long times if the amplitude is sufficiently
small [2]. Figure 2 indicates that the initial decay of @), is approximately exponen-
tial, i.e. [Q2(t)| = |@2(0)|e~. This result is generic to the experiments, and is sig-
nificant, since arbitrary linear perturbations need not decay exponentially. Of equal
interest is that, when the damping is weak (y/w << 1), the actual vorticity pertur-
bation behaves like an exponentially damped eigenmode: §{(r,t) ~ £(r)e " Te ™",
for r S r.. This perturbation is referred to as a “quasi-mode”, since it is not an
exact eigenmode of the Euler equations.
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FIGURE 2. Typical evolution of the quadrupole moment, Q2. The X’s give Q for the experi-
ment in Fig. 1(b). The diamonds correspond to linear theory. The dashed line is an exponential
fit to the initial decay.

LINEAR EIGENMODE THEORY

As pointed out by Case [9], a linear vorticity perturbation varying as €™ can
be viewed as a sum of discrete modes plus an integral of continuum modes (also
called “shear-waves”) [9-11]:

56(r) = 3 Alwilelr)e™# + [ doAl)E ()™ @

We will use the index & to refer to both discrete and continuum modes. These
eigenmodes satisfy the following integral eigenvalue equation:

m(rIEr) — 2G) [ A Gl = wikslr), (@

where (! is the radial derivative of the equilibrium vorticity. The Green’s function
in Eq. (4) is given by Gum(r|r') = —o= (}j)m [1 - (%)Zm] . Here, r5 (r<) is the
greater (smaller) of r and 7.

The eigenmodes can be obtained numerically by discretizing Eq. (4) in 7. This
leads to a standard matrix eigenvalue equation, ; Mi;&(r;) = wiée(r:). If there
are N radial grid-points between 0 and R, then a solution to the matrix equa-
tion gives N eigenmodes. Any linear initial value problem can be solved numeri-
cally with a superposition of these eigenmodes: 6((r,t) & i, A(wk)ék(r)e ™.
The solution generally breaks down for times greater than the minimum value
of 27 /mSQ Ar, where Ar is the radial grid-point spacing and ((r) is the radial
derivative of the rotation frequency.

When there are no discrete modes, the perturbation consists entirely of con-
tinuum modes. It is common (but often misleading) to view this perturbation
intuitively as a passive scalar in the equilibrium shear flow. However, a quasi-mode
is a superposition of continuum modes that does not behave like a passive scalar.
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FIGURE 3. Equilibrium profiles and (m = 2) radial eigenfunctions for a top-hat vortex with a
discrete mode (a), and a top-hat vortex with a quasi-mode (b).

One goal of this paper is to clarify how the “phase-mixing” of continuum modes is
consistent with the observed quasi-modes.

It is useful to compare a quasi-mode, which exists when ¢!(r.) < 0, to an un-
damped discrete mode, which exists when (/(r.) = 0. Figure 3(a) shows the m = 2
eigenmodes of a “top-hat” vortex, similar to that studied by Kelvin [12]. This top-
hat supports a single discrete mode, which has a critical radius r, > R,, and a set of
continuum modes that have eigenfrequencies in the range 2Q,(R,) < wy < 2,(0).
Figure 3(b) shows the eigenmodes of a similar vortex, with a skirt of vorticity that
tapers past r.. The negative vorticity gradient at r. causes the discrete mode to
be replaced by a wave-packet of continuum modes. The continuum modes in this
wave-packet are labelled “exceptional” in Fig. 3(b), since they are approximately
the same as the original discrete mode. The only noticeable difference is that each
continuum mode has a singular spike near r., where the fluid rotation is resonant
with the mode. As we will soon see, the wave-packet that replaces the undamped
discrete mode evolves as a quasi-mode, which decays exponentially (at early times)
as the continuum modes disperse.

LINEAR RESPONSE TO AN IMPULSE

We now consider the response of the vortices in Fig. 3 to a brief external impulse,
of strength £. The impulse is applied at the wall, and creates an instantaneous
“external” stream function, e (r,0,t) = €6(t)(r/Ry)%e®. A straight-forward
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FIGURE 4. The (m = 2) eigenmode amplitudes after an impulse is applied to a top-hat vortex
with a discrete mode (a), and a top-hat vortex with a quasi-mode (b).

calculation shows that, for a monotonic vortex, the complex amplitude of each
eigenmode (immediately) after the impulse is given by

A(wk) = 'L_ﬁ_ <§k,7'<.;> . 2e fO v dr 7'36](;(7”)

El @)~ T G ©)

Here, (f, h) is short-hand for the inner-product f;™ dr 72 f*(r)h(r)/I¢(r)]- Equa-
tion (5) indicates that the excitation of an eigenmode is proportional to its (scaled)
multipole moment (here the quadrupole moment, since m = 2). In this sense, the
system exhibits reciprocity: the eigenmodes that produce the largest external fields
are also the most sensitive to excitation by a brief external impulse.

Figure 4 shows the response of both vortices in Fig. 3 to an external impulse.
In case (a), the discrete mode is excited about 100 times more strongly than any
of the continuum modes. In case (b), a similar initial perturbation is excited,
but it now decomposes into a sharply peaked distribution of continuum modes.
The continuum modes in the peak region are exceptional, in that they are similar
in form to the original discrete mode (see Fig. 3). Due to this similarity, and
the sharply peaked distribution, the excitation will behave like an exponentially
damped version of the original discrete mode. The decay rate -y of this quasi-mode
is proportional to the width of the peak in A(wy). Note that the simple mode-
like behavior of the excitation breaks down near 7., where the continuum modes
have singular spikes. Here, the perturbation forms filaments, like those seen in the
experiments [Fig. 1(b)].

The evolution of the quadrupole moment of the excitation in case (b) is shown
in Fig. 5. At early times, the amplitude of @, decays exponentially. The inset
shows that, for r < 7., the vorticity perturbation merely decays as a damped
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FIGURE 5. Evolution of an excited quasi-mode on a top-hat vortex [Fig. 3(b)]. The dashed
line is exponential Landau damping, given by Eq. (6). The vorticity perturbation (inset) behaves
like a damped, rotating mode (for T' < 100 and r < r.). The ‘+’ and ‘~’ signs indicate regions of
positive and negative vorticity perturbation.

mode, without shearing apart. Near r., the perturbation actually grows to a finite
amplitude and then filaments (not visible). Eventually, the decay of Qy turns
algebraic, as it must for all linear perturbations on a stable vortex that has no
discrete modes [4].

Exponential decay of (), is apparently the “generic’ evolution after an exter-
nal impulse excitation. This is significant, since arbitrary perturbations can (and
often do) evolve with no stage of exponential decay. However, the possibility of
exponential decay has been known for some time. A general solution to the initial
value problem shows that any perturbation will have a contribution from a “Lan-
dau pole” of the equilibrium profile [4-6]. This contribution behaves exactly like
an exponentially damped mode, but never represents a complete solution to the
initial value problem.

The Landau pole for the top-hat profile in Fig. 3(b) gives the following exponen-

tial decay rate [4]:
v =T (2) [i- (7)) ®

where r, is the radius at which {; is maximal. Equation (6) is derived in Ref.
[4], under the assumption that ¢/(r.) is close to zero. The dashed line in Fig. 5
corresponds to exponential decay that is given solely by the Landau pole [Eq. (6)].
Clearly, the Landau pole gives the correct decay rate of an impulse generated
perturbation on a top-hat vortex.

Figure 6 shows the response of a Gaussian vortex, (,(r) = e /R+)’ {0 an
external impulse. As before, the initial decay of @) is exponential and dominated
by the Landau pole. Here, the Landau pole was calculated numerically, using the
method of Spencer and Rasband [6].
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FIGURE 6. Decay of an impulse generated perturbation on a Gaussian vortex. The dashed

line corresponds to the exponential decay that is given by a Landau pole, which is calculated
numerically [6].

Although @, decays exponentially, the vorticity perturbation (inset) does not
behave like an exponentially damped mode. This is due to the large decay rate
v/w = .35, compared to the previous case where y/w = 0.01. Because v is large, the
excitation has a broadly peaked distribution of continuum modes, with resonant
radii (and singular spikes) spanning most of the vortex. The evolution of such
perturbations is characterized by the “spiral wind-up” [13-15] that is observed
here.

SUMMARY

In this paper, we examined the inviscid damping of elliptical perturbations on
a 2D vortex. Specifically, we considered perturbations that were generated by
an impulse, applied at the wall. It was shown that, in general, exponential Lan-
dau damping properly describes the initial decay of the perturbation’s quadrupole
moment (,, despite the fact that arbitrary perturbations need not decay expo-
nentially. We also showed that when Landau damping is weak (v/w << 1), the
vorticity perturbation 6¢ behaves like an exponentially damped mode (for r < 7).
This quasi-mode was identified as a wave-packet of exceptional continuum modes
that decays exponentially as the continuum modes disperse. When Landau damp-

ing is strong (y/w ~ 1), the vorticity perturbation exhibits spiral wind-up, and
does not resemble a mode.
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Abstract. The equilibrium configuration and the stability of vortex patterns made
of point vortices equally distributed on two circumferences in a bounded system are
studied. Such patterns appear worth studying from a theoretical point of view, as
they have been observed experimentally in nonneutral plasmas confined by a Penning
trap. The results presented in the paper prove that stable configurations of two rings
of point vortices can exist.

INTRODUCTION

Experiments on nonneutral plasmas confined in a Penning trap [1] have shown
the existence of stable configurations of vortex patterns, which can be classified into
three categories: (1) vortices equally distributed on a circumference; (2) vortices
equally distributed on a circumference with an additional central vortex; (3) two
sets of vortices equally spaced on two circumferences having the same center but
different radius (in fact, only one pattern of this kind has been observed, made
of six vortices nearly placed in the vertices and in the middle of the edges of a
triangle). While the study of the patterns of the first kind is a classic subject
in the vortex theory, analytic results for the second category have been presented
only recently [2]. For the third kind of pattern, theoretical work was performed by
Aref [3] only for an infinite medium. The present work generalizes Aref’s results
when the domain of the physical system whose domain is a circle of radius R.. An
analytic condition is derived for the existence of a stationary configuration and the
linear stability analysis is carried out. Finally, a non-linear analysis is performed
for the m = 0 mode.

EQUILIBRIUM ‘FOR TWO RINGS OF VORTICES

Due to the very high value of the bouncing frequency in axial direction with
respect to the rotation frequency of the guiding center in transverse direction,
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charged particles in a Penning trap can be regarded as straight lines of uniform
charge, and the dynamics of the system becomes essentially a two-dimensional
problem. Moreover, the linear charge density is here assumed to be nonvanishing
only for a finite set of regions (vortices), each of them having a size much smaller
than the radius R, of the cross section of the trap. As the Larmor radius is usually
small with respect to R, the velocity of each vortex in the (z,y) transverse plane
is given by the E x B drift. By expressing the total electric field as the sum of the
fields produced by each vortex, a set of differential equations governing the time
evolution of the coordinates (z,,y,) of the vortices is obtained. The equations can
be written in a compact form by making use of the complex variables {, = z,, + iy,
and defining the strength of the n-th vortex as v, = —Q,,/(27&¢B,), being Q,, the
linear charge density of the vortex and B, the axial magnetic field. In addition,
when a stationary configuration rotating with angular velocity 2 is investigated,
a reference frame rotating with the same velocity can be usefully employed [2].
In this frame, the classic equations for the dynamics of point vortices [4] can be
written as:

dg;, . Vi

no__ —Q * + _ Ik _ 1

dt n ; =G -G M)

where Zk’ stands for }_, ., while (. = R2/(; represents the location of the n-th
image charge in the complex plane.
In the following, the equilibrium condition is studied for a configuration of 2N

vortices, equally distributed on two circumferences of radius R; and R,, where
the vortices have the same strength, y; and ., respectively. The locations of the

vortices are provided by two groups of N complex numbers, (7(11) and (,(12), given by:

¢ = Riexp i (pn+ ®1)], (2 = Ryexpli(pn+ )], n=1,.., N  (2)

1

being ¢, = ZI’{,—"; ®, and @, are the phases for the two sets of vortices. By introducing
the expressions (2) for C,(ll) into Eq. (1) and supposing the pattern to be stationary,

one obtains

Q= yw (I41) + 72k (Ry, Ry, A®) and Q = yw (Re) + mik (Ry, Ry, —AD)
(3)
for the first and the second ring, respectively, being AP = &, — ®,, while the

quantities w (R;) and & (R, Ry, A®) are defined in terms of the function Sy (z) =
N/(1 - 2zM) as:

- - ()
mon=fo (B) -0 ()] o
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For a stationary configuration, expressions (3) must provide the same value of {1.
This requires that the ratio 2/, between the strengths of the vortices of the two
rings must have a precise value, given by:

¥ _ K (Ry, Ry, —0®) —w(Ry) ©)
Y1 H(Rl,RQ,Aq)) — w(Rg)

In addition, Q must be real. To meet this requirement, A® must be either 0 or 7 /N
(this pattern is referred in the literature as ”double alternating ring” [3]). Having
fixed the value of A®, regions can be distinguished in the plane (R;, Rg) in which
v2/71 has the same sign. For a plasma made of a single species of particles, the
region where /71 is negative is forbidden. The curves, I'; and I'}, defined by

% (Rz, Ry, —A®) = w(R;) and & (Ry, R2, A®) = w (Ry) (7

respectively, represent the boundary between permitted and forbidden regions. An
explicit parametric equation for T'; can be derived by using the new coordinates

(8, P) in the (Ry, R,) plane, such that R,/R; = tan© and (Re/R1)*™ = P; in fact,
the first Eq. (7) becomes a second-order algebraic equation for P:

tanz@{ 1 1 }=N—1 1

l1—-0tan”© 1—oPtan™ © 2N 1-P (8)

where 0 = 1 if A® = 0 and ¢ = —1 if A® = «/N. After solving Eq. (8) with
respect to P, R;(©) and Ry(©) are determined analytically. The curve T’y is plotted
simply by exchanging R; with Rp. In Figs. 1, the curves I'y and T'; are plotted
for double alternating rings for N = 2 + 5. In each figure, the forbidden region is
indicated as a shaded area.

LINEAR STABILITY OF THE VORTEX PATTERN

The stability properties of a stationary vortex pattern can be determined by
writing the coordinates of the two rings of vortices as [2]:

¢ (t) = (Ruzexp (i®1,2) + 6G2(2)) exp (ispn) 9
where R; 2 and @1, represent the equilibrium configuration as determined in the
previous Section. By substituting the expressions (9) into Eq. (1) and supposing
that |6§T(L1’2)‘ < |Ry 2], a system of linear differential equations for C,(zm) is obtained.

The fully-coupled system can be simplified by performing a Fourier analysis. In
facts, by defining the Fourier amplitudes for the two rings as:

N
ALY (1) = " exp (~imia) 8652 (1) (19)

n=1
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FIGURE 1. (Left) The curves I'y and I'; are plotted for two alternating ring patterns of vortices
with N = 2 (in the region where R; > Ry) and N = 3 (in the region where R; < R;). The shaded
area represents the region of the (R;, R2) plane where vortices having strengths of different sign
arc required for the equilibrium. (Right) Same for N =4 (B} > Ry) and N =5 (R} < Rp).

the system is decoupled into 4 x 4 systems having the form

A" -C,, -D,, —E,. —F, A"
d | AY | | (D) (Cow) (Fom)' (Bem)' AY
I I B o L P I
X (P (B (05 (o) ) \ B
being
R? R?
G =+ e, (K
R | Z1] |Z1] /s .
=nl_ c T2 c Zs
=g o ran (N B (5) -m(2)}
—_ ’72RC Rc _ Y2 Zg
Em = ZfZé‘QM_m (ZIZ;)  Fom = ZfM“’" (Z,)
with
M (z) — _N____ % mz™1 4 (N—m)zN+m_1, me [O,N]
m - (1 _ ZN)2 —mz2N+m-1 + (N +m)zN+m—17 m € [——N, O]
(13)
and
1
Om = 5 (Im| = 1) (jm] = N +1) (14)
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FIGURE 2. Region of stability (blank area) and of instability (shaded area) in the (R;, Rg)
plane for a double alternating ring of vortices with N = 3, with respect to the modes with m =0
(R1 < Rz) and m = %1 (Ry > Ry). The curves I'; and I'| are also reported.

The coefficients indicated by ® are obtained by exchanging Z; with Z, and v, with
v2. Each system (11) describes the evolution of a collective mode of the vortex
pattern. The equilibrium configuration is stable if all the eigenvalues of the matrix
of system (11) are real. In this case, the mode represents an oscillatory motion of
the vortices around their equilibrium position.

The double alternating ring with N = 3 is considered in detail. In this case, the
eigenvalues must be calculated for m =0, 1, 2, or, alternatively, for m = 0, +1 (in
fact, A, = Anim). As the eigenvalues for m = —L are the complex conjugates of
those for m = L, only two calculations are necessary. For m = 0, at least one of the
eigenvalues must vanish. In fact, by simply rotating the entire configuration, a new
equilibrium is found; thus, the eigenvalue corresponding to that perturbation must
be zero. Considering that the eigenvalues for m = 0 are conjugate, the eigenvalue
equation must have the form A* + ayA? = 0, and the condition of stability reduces
to ag < 0. The region of stability for the m = 0 and m = +1 modes in the plane
(Ra, Ry) are shown in Fig. 2.

NONLINEAR EVOLUTION FOR THE M = 0 MODE

The m = 0 mode corresponds to a situation in which two rings of equally-spaced
vortices rotate and change their radius independently. The nonlinear evolution of
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the mode was studicd by Aref [3] for an unbound system, by introducing complex
quantities, Z;(t) and Z,(t), such that:

¢EA(t) = Zia(t) exp (ipn) = pr2(t) exp (i®,5(t)) exp (i) (15)

From Eq.(1), one obtains the cquations governing the time evolution of Z, and Z,
which can be cast into a complex Hamiltonian formulation, as:

dz: oW _ dZ, OH

Yo = 7. Wa—grm = _8—Z;;’ a=
where the Hamiltonian of the problem is defined as

H(Zy, 22,2}, 23) =
2

Z Q 7 2 N 1 21 VA 21 1 IZa|2N
_ 7011 al +( - )’Ya Ogl ll‘_’Ya 0g - R2N (17)

a=1
2
ZZ\N
") !

The basic properties of the motion can be determined by noticing that two constants
of the motion exist: 1)the Hamiltonian Hj; 2) the quantity L = ; P2 -+ 1203, related
to the angular momentum of the vortices. By writing p; and p; in terms of L. and
of pa/p1, and considering that H is a function of p;, py and A® = &, — ®;, one can
conclude that the trajectory of the system in the (A®, p»/p:1) plane occurs on the

curve
P2 P2
H {pl (L, —) , P2 (]L, -——> ,A@} = Const (18)
P1 f

Trajectories obtained from Eq. (18) confirm the linear analysis, for they show 'O’
and "X’ points for stable and unstable configurations, respectively.

1,2 (16)

2
+7172 log[Z{V - Z£V| — N2 log
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Abstract. The diocotron instability in Penning traps is studied with a new simulation
code based upon the point-vortex method. The equations of motion for the computa-
tional particles are solved by using the fourth-order Runge-Kutta method. Cylindrical
coordinates are used in the solution of the Poisson’s equation, allowing the boundary
conditions for the electric potential to be applied exactly; moreover, an efficient al-
gorithm based on the Fast Fourier Transform can be employed. The code has been
validated by considering the linear evolution of the diocotron instability. Comparisons
have shown excellent agreement between the simulation results and the ones obtained
with the linear theory.

INTRODUCTION

The study of the time evolution of the particle distribution in a Penning trap is
an important topic in the physics of nonneutral plasmas. The discovery that the
electron distribution can evolve towards stable configurations of vortex crystals [1]
has been recently reproduced successfully by Schecter et al. [2] with a simulation
code solving the classic 2D drift-Poisson model. According to this physical model,
the evolution of the electron density, n(r,8,t), is governed by the following set of
equations (3]:

a—n+v-Vn=0
ot 1
v=§:esz<I> (1)
Ve =2
&p

where the velocity field, v(r, 8,t), is given by the E x B drift, and the electrostatic
potential, ®(r, 8, 1), is calculated by solving the two-dimensional Poisson’s equation.
The conclusions of the work by Schecter et al. represent a very important result,
for they prove that Egs. (1) are an appropriate model for the study of vortex

CP498, Non-Neutral Plasma Physics I1I, edited by John J. Bollinger, et al.
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evolution. In this framework, the Authors have developed a new Particle-in-Cell
code in order to obtain high-accuracy results for the long-time cvolution of the
electron distribution. The new code presents some peculiarities, which are different
from the normally-used codes and would allow highly accurate simulations, in the
Authors’ opinion. In order to test the precision of the code, the simulation of the
diocotron instability has been considered. In fact, whenever a small perturbation is
introduced, the evolution of the system can be calculated accurately by solving a set
of linearized equations obtained from Eqs. (1). On the other hand, the simulation
of such a situation represents an important benchmark for a PIC code, in which
the numerical noise could in principle hide the phenomenon one would obscrve.
The comparisons between the results of the PIC simulation and the solution of the
linearized equations, which are presented in the last part of the paper, show the
excellent performance of the new code and prove that the numerical noise does not
alter the physical evolution of the system.

DESCRIPTION OF THE SIMULATION CODE

The numerical solution of Eqs. (1) has been performed by implementing a
Particle-in-Cell code [4], in which computational particles are employed to rep-
resent a large number of real particles, which are described by the guiding-center
approximation. The code is constituted by three parts: the Poisson solver, the
particle-grid interpolation and the particle mover. The implementation of each
part of the code has been performed by taking into account the peculiarities of the
physical system to be simulated. Here follows a brief description of the techniques
employed:

e Poisson solver

Due to the geometry of the physical system, cylindrical coordinates (r,6) are
the most appropriate ones in the solution of the Poisson’s equation. In fact, they
present two advantages: the former is the possibility to exactly impose the bound-
ary condition for the potential, ®(R,,8) = 0 (being R, the radius of the cross
section of the trap); the latter is that, by using cylindrical coordinates, the Pois-
son’s equation can be solved with an efficient algorithm based upon the Fast Fourier
Transform. In fact, by taking the discrete Fourier Transform of the §-discretized
equation for @,(r) = (7, 2ra/Ny) :

lg aq)a lq)u+1 B 2(1)0: + q)a—l _ CTLQ(’I‘)
ror \' or r2 AG? T g

a set of decoupled differential equations is obtained for the Fourier components of
the potential, @, (r):

1d d(’isk 1 sin (M) 2 ~ eﬁk(r)
el Cl B 2/} § =80 k0,1, Ny—1 (3)

rdr dr & €0

y a=0,1,...,N9—1 (2)
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Once the Eqgs. (3) are solved numerically, the potential distribution is reconstructed
by using the inverse transform:

Ng—1

1 ~
Z . (r) exp(2mika/Ny), a =0,1,...,Ng— 1 4)
k=0

<I>a(7") = Fg

e Particle-grid interpolation

The interpolations between grid and particles and vice versa are performed by
means of the classic Cloud-in-Cell method [4]. According to this procedure, the
electric charge of a particle P having coordinates (rp,8p) is assigned to the four
nearest grid points, by using an (r,6)-bilinear weighting. More precisely, if the
coordinates of these four grid points, A, B, C, D are (R+Ar, 0), (R+Ar, 0+ Af),
(R,©) and (R, © + AB), respectively, the fractions of charge assigned to each cell
are

W4 = WTW97 wp = W’I‘(l - W@), (5)
we = (1= W.)(1— W), wp = (1~ W,)We.
being
(T‘p+R+A7")(’I"p—-R) 0p— O
= = 6
W 2rplAr > W Ab (©)

Slightly different expressions are used when a particle approaches the center or the
boundary of the domain.

In order to provide a precise, noiseless representation of the initial electron den-
sity distribution, computational particles can have different charge. In practice,
if a given cell contains initially M particles, each particle is assigned 1/M of the
charge pertaining to that cell.

e Particle mover

The equations of motion for Np computational particles of coordinates

{r1,r,...,tn,} and constant charges {gi,qo,...,qn,} can be written formally as
a system of differential equations:

dr
d_tp =v,({r1,r2, ..t} {1, 2, e }), P=1,2,..,Np (7

where the function v, contains the particle-grid interpolation, the solution of the
Poisson’s equation, the evaluation of the electric field on the grid, the interpolation
grid-particle and the calculation of the E x B drift. The system (7) can be solved
by using classic techniques of the numerical analysis. After a number of tests, the
fourth-order Runge-Kutta method has been chosen, as the most effective in terms
of CPU time.
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SOLUTION OF THE LINEARIZED EQUATIONS

When perturbations of small amplitude are introduced in an equilibrium con-
figuration, Egs. (1) can be linearized, obtaining

o
e +vi-Vnp+ve-Vn; =90
o en (8)
2 1
v1=——e2XV<I>1, V(I)IZ——
B, €0

where the quantities labelled by 0 and 1 refer to the unperturbed configuration
and to the perturbation, respectively. Equations (8) can be further simplified by
considering the evolution of a single normal mode, in which every quantity depends
on 6 as exp(ikf). A system of equations can be written for the amplitudes 711 4 (r, t)
and @, 4(r, 1), as [3]

Ofive ik [(ddo.  dno~

5 "B ("El’r—nl,k - W‘I’l,k) =

10 [ 8%\ K= _ eiug ©)
ror\"or | T M T g

Equations (9) can be solved analytically when the unperturbed density profile ngy(r)
is piecewise constant, as the problem presents a finite number of time eigenvalues
[3], from which the growth rate of the instability can be immediately evaluated. For
a continuous density profile, both discrete and continuous eigenvalues are present
[5, 6]. In this case, a simple comparison with the simulation code can be obtained
by solving numerically Eqs. (9). In fact, by considering 7; x and &’l,k only for a
finite set of N, radial positions ro = aR./N,, Egs. (9) can be approximated as

dn . ~ =
—d;‘:’ﬁ + ik (Anlyk — ]B(I)l,k) =0

Lp®1p =01

(10)

where A, B and L, are sparse matrices, which are obtained by discretizing the
space operators appearing in Eqs. (9), while 1 5 and Zf’m are the unknown vectors
for the density and the potential perturbations, respectively. Finally, a system of
linear differential equations for @ j

3. -
Lkdd;"‘ = ik (B — AL;) ®1 (11)

is obtained. The system can be solved numerically with very high precision. In the
rest of the work, the initial value for ®; ; will correspond to a density perturbation
ny x(r) proportional to the unperturbed density ng(r).



RESULTS

The PIC code has been validated by comparing the simulations with the results
provided by the linear theory. Two different categories of unperturbed density
profiles have been considered: staircase and continuous profiles. Here follow the
results for two different profiles, one for each category.

For the first category, a hollow-ring distribution has been considered, where ng(r)
is constant for 0.5R, < r < 0.7R. and zero otherwise. Excellent agreement was
found between the growth rates obtained from the results of the PIC code (using
45,000 particles) and the analytically-calculated values of the time eigenvalues w
[3]. In fact, by exciting the k = 2 and k = 3 modes (the & = 1 mode is stable),
Im(w/wp) has been evaluated from the PIC simulations as 0.1467 and 0.2550,
respectively, to be compared with the exact values, 0.1466 and 0.2528.

As an example of continuous profiles, the following density distribution:

r2 r2\ 2
Constx——(l——), r<b

no(r) = b2 b2 (12)

otherwise

with b = R,/2, has been considered. The PIC code has been used with the initial
conditions n(r,8,t = 0) = np(r) + 1073ng(r) cos(kh), for k = 1,2,3. A space
discretization with N, = 995 and Ny = 256 was employed. One particle was placed
initially in the center of each cell, with a charge that was proportional to the density
in that cell. During simulation, the dimensionless mode amplitude, defined as

- 2
f0R° @k(r,t)’ rdr

ol = 2L (13
b

2
D (r, 0)’ rdr

has been evaluated. The same quantity has been calculated by using a numerical
code to solve the linear model, Eq. (11). The results of these calculations are
presented in Fig.1. As can be observed, the results of the PIC code are again in
excellent agreement with those of the linear theory and the growth of the instability
is reproduced correctly for many orders of magnitude. As predicted by Rosenbluth
and Smith [7], the ¥ = 1 mode exhibits an algebraic instability. In order to show
the effect of the space discretization, three different couples of values for (N,, Np)
have been used in one case (k = 2).

These results, together with many others which are not presented here, lead
to the conclusion that the new code provides a highly accurate solution for the
equations governing the evolution of the charge density in a Penning trap.
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FIGURE 1. Comparison between PIC calculations and lincar theory. The evolution of the
amplitude for the k = 1,2, 3 modes is shown for a continuous density profile [ Eq. (12)}.
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Abstract. A two-dimensional numerical code for the kinetic description of the electron
dynamics in a Penning-Malmberg trap has been developed. The code solves the Vlasov
equation for the electron distribution function in the guiding center approximation,
coupled to the Poisson equation for the electrostatic potential. In the present version
of the code, the drift velocity is given by the E x B-drift. The present code constitutes
the first step of a numerical project for the solution of the gyrokinetic Vlasov-Poisson
system of equations in a 3D cylindrical geometry.

In this paper we describe the two-dimensional numerical code that we have de-
veloped so far for the kinetic description of the electron dynamics in a Penning-
Malmberg trap. In the present (bounce averaged) version of the code effects due
to the finite axial length of the system are neglected, and the considered equations
are isomorphic to the Euler equations which govern the flow of 2D inviscid incom-
pressible fluids, with free-slip conditions at the boundary. The obtained results
will then be suitable for comparison with the existing 2D vortex-in-cell simulations
[1]. The long term aim of our project is to describe the 3D nonlinear dynamics of
a nonneutral plasma, and in particular the influence of the axial electron motion
on the 2D vortex dynamics for different values of the ratio between bounce and
rotation frequencies (the so-called "rigidity” parameter).

In low density pure electron plasmas confined in Malmberg-Penning traps [2]
the characteristic plasma rotation frequency w, is much smaller than the plasma
frequency wy,

w, Wy
LAy Vg PG 1
wp 2w < (1)

where w, is the electron cyclotron frequency. In addition, the characteristic rotation
velocity, vg = r w, is much smaller than the velocity of light c,

2

Vg W, T Wp

—_ = — 1. 2
¢ 2w, 2d.w. < (2)
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Here d. = c/w, is the electron skin depth and r is the radius of the plasma col-
umn. In this regime we can adopt a purely electrostatic description of the plasma
dynamics, with the electric field given by E = —V®, and describe the motion of
the particle gyro-centers in terms of the particle drift equations

R = lg {vE+ ib X (ng-kvE-VvE)
w ot

Vi
+V [b+Jbe+levE]+iﬁbeB}
we We w, m

c

1
18 b+Ebe+;vaE A4g QVE'*‘VE‘VVE - Eyp|,
Jem c We m ot m

where vg = cE x B/B? is the particle E x B-drift velocity and

Y

Jc=§[1+ﬂb-be+lb-vaE}.

m w, w,

represents the Jacobian of the transformation (r,v) — (R, g, V|, ¢), ¢ being the
gyro-angle, and E and B are the self-consistent electric and magnetic fields. To
leading order in the ratio (w,/w.)?, and assuming the externally imposed magnetic
field to be spatially homogeneous, the gyrocenter motion is simply given by

R=ve+Vpb, Vj=ZE.b. (3)

Neglecting temperature effects in the perpendicular plane the gyroaveraged
Vlasov equation reduces to the drift kinetic equation,

oF - OF
- +R-VF4+ V=0 V2@ = —4np, (4)
Bt Yav,
B
p=a= [dudVj F(R,uVj,1) (5)

where F = F(R,p,V,t) is the distribution function of the guiding centers
and the conservation of the total number of guiding centers is expressed by
JdudVjdR J. F = const..

The ratio between the characteristic time of the parallel dynamics and the rota-
tion period is measured by

w, w!lL

~ P

W We Uthe

(6)

where w, X vine/2L is the bounce frequency of the electrons along the magnetic
field lines, vy, is their thermal speed and L is the trap length. If the rigidity
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parameter w;/w, is large, electrons bounce back and forth many times before com-
pleting an azimuthal rotation and the plasma response, on the rotation time scale,
is determined by the bounce averaged kinetic equation. Then, Eq.(4) reduces to

B—F-FVE-V_LF:O (7)
ot

where all quantities are now bounce averaged, and depend on time and on the
coordinates perpendicular to the magnefic field only. Integration of F, over p,
reduces simply to the particle density n. In this equation the effects due to the
dependence of the plasma length on 7 , which arise from the 7,z dependence of
the confining potential, as discussed in (3] , are neglected. In order to estimate a
characteristic rotation frequency for inhomogeneous configurations, we define

<w,>:f02"/ong—‘derda //:"/oﬂﬁrdrdo. (8)

. In the present version, the code solves the drift-kinetic equations in a two-

dimensional cylindrical geometry for a uniform magnetic field at zeroth order in
the guiding center approximation. Writing the E x B-drift velocity in terms of the
electric potential ®, and considering explicitly the case of the electron density ne,
Eq.(7) together with Poisson’s equation can be written as

5] c 6% 8 c 0@ 0O

(a— Brooor T ‘5;5;55) me(r,6,6) =0 ©)
10 8 18

(?5;’”5; * ”59—) Bl 6yt) = dmenadr, 00), o

where polar coordinates (r,6) are used. The boundary condition for the potential
is given at the wall of a circular container. These equations are discretized on a
bidimensional polar grid (r;,8;), with #; = i-dr (i = 0,...,n,;dr = 1/n,) and
6=2rj-df(j=0,...,md0 =1/ng).

The Vlasov equation is solved by means of a finite volume technique, by advanc-
ing in time the distribution function averaged over the grid cells

eij =

1 Ti 6;
dj e\’ da .=1,..-, r ; = yeeoy . 1
7'i__1/2d7'd9 _ rar - n ("' 9) 7 n 7 1 ng ( 1)

The time advancement is explicit and it is obtained by means of a Runge-Kutta
scheme.

For the Poisson equation, fourth order finite differences are used. The equation
is first (fast) Fourier transformed in the azimuthal angle § obtaining a system of
ordinary differential equations in r
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FIGURE 1. The mean density radial profile at different times (normalized on wc/wz ) for two
stable configurations: (A) step-like profile, < w, >= 0.5, and (B) smoothed monotonic decreasing
profile, < w, >= 0.47.

1d d m?
;a;rg;@m('r) - -ﬁém(r) =A4ren,,(r) m=0,...,{(ns—1)/2], (12)

where ®,,(r) and 7., are the amplitudes of the m-th Fourier component of po-
tential and density, respectively. The solution is then obtained by an inverse (fast)
Fourier transform. The nodal values of the distribution function required for the so-
lution of the Poisson equation are obtained by means of a reconstruction algorithm
based on the computation of the ”primitive function” [4]

G(r,8) = /

[¢]

9
r dr'A df' n.(', 6", (13)

i

J
G(ri,8;) = DD ricajgmemdrdd  i=0,...,n. ; j=0,...,m5.  (14)
k=11=1

The nodal values are then obtained by

1069
T roroh
A standard FFT technique is used for the computation of the derivatives in the
azimuthal angle, while for the radial derivatives a three-point combined compact
difference scheme is employed [5]. The scheme computes both the first and the
second derivative at the same time.

The main numerical problem of the present version of the 2D Vlasov-Poisson
numerical code is the onset of a numerical instability when strong gradients (or
discontinuities) are formed. This instability is responsible for the appearance of
growing spurious oscillations which rapidly lead to a numerical divergence of the

ne(ri, 6;) G(r,6)

r=r;,6=6; i=0,...,'n.,. H ] =0,...,n9. (15)
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FIGURE 2. The evolution of the / = 2 mode in the case of the initial (smooth) density profile
of Fig. 1, frame (B). The four snapshot are the shaded density fluctuations at (4) t=0, (B)
t=10, (C) t=40, (D) t=150, respectively. Here < w, >= 0.47.

distribution function. The onset of the numerical instability in the presence of
"strong” density gradients is shown in Fig. 1 where we plot at different times {nor-
malized on w./w?) the mean density radial profile in two different stable situations.
The density is perturbed at ¢ = 0 by a small amplitude (e = 0.01), I = 2 mode.
In the case of an initial step-like density profile, frame (A), we see that numerical
oscillations are generated close to the discontinuity and then propagate and accu-
mulate at the origin. On the other hand, when the density gradient is resolved
by the numerical mesh, frame (B), the density profile remains unchanged. The
evolution of the corresponding density fluctuations up to ¢ = 150 is shown in Fig.
2. We see that a filamentary structure of the mode is produced in correspondence
of the density gradient.

In order to investigate the process of vortex formation by an initially unstable
configuration, we have used the following initial ring-like density profile, F, and
perturbation, §F,

k=8
F(r) = e ™00 5f— 3" sin(k6) e 005 (16)

k=2
with € = 0.01. In Fig. 3 we show the evolution of the instability at four different
times. At t = 35, frame (D), a number of vortices are generated. Unfortunately,
after that time, the discontinuities formed between the larger vortices lead to a nu-




FIGURE 3. The evolution of an initially unstable ring-like density profile (see Eqs. 16). The
four snapshot are the density isocontours at (4) t=0, (B) t=20, (C) t=25, (D) t=35, respectively.
The resolution used in this simulation is N, = 150 and Ny = 256 and < wy >= 0.16.

merical divergence, as expected from what discussed above. A number of standard
methods capable of correctly describing the formation and evolution of discontinu-
ities are presently under investigation.

The extension of the code with the aim of describing the evolution of the system
in a five-dimensional phase space (three spatial coordinates and two coordinates
in velocity space) is also presently under development (in the electrostatic case, at
first). The component of the velocity in the direction of the magnetic field, v}, and
the magnetic moment, y, are the coordinates in velocity space in the general case.
Since the derivative with respect to the magnetic moment does not appear in the
Vlasov equation, the problem is in fact formally solved in a four dimensional phase
space.

This work was supported by "ex 40%” MURST funds (Italian Ministry for Uni-
versity and Scientific Research)
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Dynamics of coherent structures
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Abstract. Preliminary results on the drift dynamics of electrons in a Penning-
Malmberg trap, obtained by means of a two-dimensional electrostatic fluid code, are
presented. The code solves the continuity equation for the electron density in the
guiding center approximation, coupled to the Poisson equation for the electrostatic
potential. The drift velocity is simply due to the E x B-drift.

INTRODUCTION

The results presented in this paper are relevant to the two-dimensional dynam-
ics of a pure electron plasma. They have been obtained with the first, simplified,
version of a more complex code for the solution of the drift-kinetic Vlasov-Poisson
system of equations in a 3D cylindrical geometry [1]. This code will support the
experimental activity presently under development at Milano University, based on
a Penning-Malmberg trap for electron confinement, aimed at the study of coherent
structures (using the methods developed in San Diego [2] [3]), and at the inves-
tigation of single particle regimes [4]. In its present version, the code solves the
drift-kinetic equations for a uniform magnetic field at zeroth order in the guiding
center approximation. At this level of approximation only the E x B-drift is taken
into account. In the two-dimensional case, after integration of the Vlasov equation
in velocity space, the resulting equations are equivalent to the description of the
system in the cold-fluid guiding-center approximation with m, — 0.

Writing the E x B-drift velocity in terms of the electric potential @, and consid-
ering explicitly the case of electrons, the equations are written as

d 1099 10990
{5‘5_ ;"555;+;E’5§} ne(r707t) =07 (1)
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19 0 1 0%
(;57—7'5 + 7‘_2552‘) <I)(r,0,t) = ne(raovt)a (2)

where 7. is the electron density, and polar coordinates (r,6) are used. Eqs. (1)-
(2) are isomorphic to the Euler equations which govern the flow of 2D inviscid
incompressible fluids with a single sign of the vorticity. The boundary condition
for the potential is given at the wall of a circular conductor surrounding the plasma
(this corresponds to a free-slip boundary condition in the fluid analogy), and at the
wall of an internal circular conductor, when it is present. In Eqgs. (1)-(2), the radial
coordinate,r, is normalized over the radius, R, of the outer circular conductor, the
density, n., over a characteristic density, 7., the potential, ®, over 4refn, R? and
the time, ¢, over w,/w?, being w, the electron gyro-frequency and w, the electron
plasma frequency (computed with the characteristic density 7,.)

Our aim here is to test the capability of the code to properly describe typical
situations that will be faced in the experiments. Therefore, we have considered
different cases, suitable for comparison with analytical estimates. First, the devel-
opment of azimuthal perturbations of an annular equilibrium density distribution,
for the cases of sharp and soft plasma boundary. Then, two cases where boundary
conditions of the potential are changed: the first refers to the influence of a central
axial rod on stability, the second to the process of plasma deformation starting from
a cylindrical shape, to a new equilibrium when static potential perturbations are
applied to the external boundary. Finally, we have considered the more complex
case of evolution of a perturbation in a hollow column. Deliberately, no spectral
filter, nor artificial viscosity effects have been introduced in the code.

LINEAR THEORY

The newly developed code has been tested at first against the linear perturba-
tion theory. The case of an annular step function has been considered, for which
analytical results are known in the literature [5]. An initially perturbed density
ne(r,0,t =0) = 2 [H(ry—r)— H(ry — )] [1 + € cos(18)] has been considered, where
H represents the Heaviside function. Fig. 1 refers to r; = 0.4, r, = 0.6, 7t = 1,
€ =1-1072 and [ = 3, and shows the time evolution of the (averaged) spectrum
of the potential, fy dr |®(r,t)|* (for [ = 3), computed numerically (solid curve)
compared with the result expected analytically (dotted curve).

The agreement of the numerically obtained growth rates with the analytical
results is quite good within the time scale of the linear evolution.

However, the full evolution cannot be described correctly by the present code as
it becomes unstable in the presence of “strong” density gradients [1]. The results
become therefore unreliable after a certain time (in the specific case, after ¢ ~ 60).
The problems mentioned above are avoided if the evolution of a perturbed “smooth”
profile is considered (see Fig. 2). An initial perturbed electron density of the form
ne(r,0,t = 0) =@ [A+ (r/rp)*} [1 — (r/rp)%)* H(rp — 1) [1 + €cos(lf)] has been
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FIGURE 1. Average square Fourier amplitude of the potential, for [ = 3, versus time. The
solid curve represents the numerically obtained result and the dotted line is the analytical result,
exp(2vt), respectively. For the parameters of the run, the theoretical growth rate v o~ 0.1223.
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FIGURE 2. Average square Fourier amplitude of the potential, for [ = 3, versus time.
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FIGURE 3. Average square Fourier amplitude of the potential, for I = 3, versus time (initial
evolution) for an annular plasma confined between two concentric circular conductors. The solid
curve refers to ®,,4 = 40.01 and the dotted curve to ®,,4 = —0.01, respectively.

considered, with the parameter A satisfying 0 < A < 1. Fig. 2 refers to A = 0,
rp = 0.5, 7 = 27/4, e = 1- 1072 and | = 3; no numerical instability has occurred
within the time of the run. These results coincide with those obtained with a
simplified version of the code which solves the linearized Vlasov-Poisson system.

CENTRAL CONDUCTOR AND 2D PLASMA SHAPING

The code has also been used to treat the case in which a central conductor with
radius ry is present (in this case the confinement region of the plasma becomes
annular), and different boundary conditions are imposed on the conductors. Fig. 3
refers to the stabilizing effect of a negative potential ¢,.4, applied to the central
conductor, while the outer boundary is at zero potential. This figure shows the
evolution at short time of the averaged squared perturbed potential for a positive
¢rod (growing perturbation) and for a negative ¢,.q4, with the same absolute value
(stabilizing eflect). An initially perturbed density profile of the form ne(r,0,t =
0) = a[l = ((r —re)/rp)*)* [H(re+ 1, — 1) — H(r, — rp — r)] [1 4 € cos(l0)] has been
considered. The thickness of the annular plasma is 2r,. The results shown in Fig. 3
refer torg = 0.1, 7. =0.53,r, = 0.15, A =1, ¢ = 10~% and | = 3.

The 2D plasma deformation towards a new equilibrium when an azimuthally
dependent potential is applied on the outer boundary is demonstrated in Fig. 4,
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where the time evolution of the density contours starting from a purely radial
distribution is shown. An initial density profile of the form n.(r,t = 0) = [l —
(r/rp)2)* H(r, — r) has been considered in this case, and the boundary condition
for the potential has been chosen as ¢(r = 1,0) = —esin(lf). The results shown in
Fig. 4 refer to r, = 0.6, & = 1, ¢ = 0.08 and [ = 3. Note that the plasma tends
to be “repelled” from the azimuthal positions where the applied potential on the
conductor is positive, and vice versa [6].

INSTABILITY OF A HOLLOW COLUMN

The code has been used for the investigation of the time evolution of an initial
perturbation with [ = 1 in a hollow density distribution. The linear theory of this
problem has been developed by Smith and Rosenbluth [7]. The time evolution of
the average square amplitude of the [ = 1 Fourier mode is shown in Fig. 5. The
equilibrium density profile in the simulation is similar to that considered in [7].
The observed oscillations seem to agree with the linear solution reported in [7]. We
observe also a linear growth of the amplitude squared up to ¢ & 250.

FIGURE 4. Evolution of the density due to a static perturbation of the potential
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CONCLUSIONS

The presented cases, seem to confirm the basic validity of the Vlasov-Poisson code
in its 2D version. However, taking into account the caveat mentioned here and in
[1], significant adjustments are required to make it suitable for the investigation of
phenomena on very long time scales.

This work was supported by ”ex 40%” MURST (Italian Ministry for University and
Scientific Research) funds and INFM (Italian National Institute of Physics of Matter)
Sect. A funds for Advanced Projects (PAIS)
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FIGURE 5. Average square Fourier amplitude of the potential, for { = 1, versus time.
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The modified drift-Poisson model:
analogies with geophysical flows
and Rossby waves
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Abstract.

We discuss an analogy between magnetically confined nonneutral plasmas and geo-
physical fluid dynamics. The analogy has its roots in the modified drift Poisson model,
a recently proposed model that takes into account the plasma compression due to the
variations of the plasma length [1]. The conservation of the line integrated density in
the new model is analogous to the conservation of potential vorticity in the shallow wa-
ter equations, and the variation of the plasma length is isomorphic to variations in the
Coriolis parameter with latitude or to topography variations in the quasigeostrophic
dynamics. We discuss a new class of linear and nonlinear waves that owe their exis-
tence to the variations of the plasma length. These modes are the analog of Rossby
waves in geophysical flows.

There is a well-known analogy between nonneutral plasmas confined in a
Penning-Malmberg trap and two-dimensional inviscid fluids. In this analogy the
plasma electrostatic potential and density correspond to the fluid streamfunction
and vorticity respectively [2]. This analogy has proved to be particularly useful
in the experimental study of various fluid dynamics problems using nonneutral
plasmas, e.g. Ref. [3]. The goal of this paper is to study a new analogy between
nonneutral plasmas and geophysical fluid dynamics. This analogy is based on
the modified drift-Poisson system, a recently proposed model that generalizes the
usual drift-Poisson equations by taking into account the variations of the plasma
length [1]. The modified drift-Poisson model consists of the conservation of the
line-integrated density and the Poisson equation, in dimensionless variables

D 2
ﬁ(nL)—O, Vip=mn, 1))
where n(r,0,t), ¢(r,0,t), and L(r,8,t) are the density, potential and length of the

plasma respectively, D/Dt = 8, + u-V with u = % x V¢ the E x B drift velocity,

1) e-mail: diego@lanl.gov
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and V? is the 2-dimensional (perpendicular to the magnetic field) Laplacian. As
illustrated in Fig. 1-(a), when the plasma length varies, due to the curvature of the
sheaths at the ends, charge conservation of plasma columnns aligned in the direction
of the magnetic field implies a variation of the plasma density. The model (1) was
originally proposed to resolve a controversy regarding the stability of the m =1
diocotron mode, see Refs. [4,1,5].

For the present discussion we will assume L = Ly(r). A more general model for
L, which incorporates free boundary effects on the plasma length, is discussed in
[1]. For L = Ly(r) the modified drift-Poisson model (1) becomes

V3¢ L\ 86 _,,
= +{¢,v2¢}—<TL°O> =5 V'9=0, ()

where the prime denotes derivative with respect to r, and {f, g} = 1/r (0, f 9sg —
8, f Bpg). Writing ¢ = ¢o(r) + ¢(r,0,t), and neglecting nonlinear terms in ¢ we get
the linearized version of Eq. (1)

P70 {009} + {5,720} - (é‘f—o") % -0, 3)

where np(r) = V2¢, is the equilibrium density. The precise form of Ly(r) de-
pends on the numerical solution of the plasma equilibrium equations. However, as
discussed in Ref. [1], Lo(r) can be parametrized as

Lo(r) = Lo(0) [1 = s7?] (4)

where Lo(0) and the curvature x depend on the equilibrium parameters. Typically
k> 0.

ANALOGIES WITH GEOPHYSICAL FLOWS

When the variation of the plasma length L is taken into account the plasma
density n is not conserved, and the analogy with the two-dimensional Euler equa-
tion breaks down. However, there remains a new and interesting analogy with
geophysical fluid dynamics based on the conservation of the line-integrated density
nL in Eq. (1). In addition to its intrinsic theoretical interest, this analogy is impor-
tant from the perspective of modeling geophysical flows with nonneutral plasmas
experiments in Penning-Malmberg traps.

To explain this analogy consider a uniform density, incompressible, rotating fluid,
shown in Fig. 1-(b), with free surface z = 5(z,y,t), and bottom topography z =
—Hy[l — A(r)]. This system is commonly used in geophysical fluid dynamics as
the starting point in the development of simple models of the oceans and the
atmosphere [6]. An important parameter in rotating fluid dynamics is the Rossby
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number defined as Ro = U/(2Q0L) where U is a horizontal velocity scale, L is a
horizontal length scale, and € is the rotation frequency.

The limit Ro < 1 is of particular interest in geophysical flows. In this limit,
because of the Taylor-Proudman theorem, the horizontal velocity u is to a good
approximation independent of z. If in addition it is assumed that the scale of
vertical motions is small compared to the scale of the horizontal motions, specifically
if Ro(Hy/L)? < 1, we get the shallow-water model which implies the conservation
of the potential vorticity g in the co-rotating reference frame

Dq (420

where ( is the vorticity and h = 7+ Hy(1 — A) is the fluid depth.

In the non-rotating (inertial) frame Eq. (5) reduces to D(¢/h)/Dt = 0 which is
analogous to the conservation of the line integrated density in Eq. (1) if we identify
the plasma density n with the vorticity ¢, and the fluid depth h with the inverse
plasma length 1/L.

Topography variations. Neglecting free surface effects (7 = 0) and assuming
A ~ (/2Q ~ Ro we get to first order in the Rossby number

(+20 20 [ ¢

1+55+ A(r)] + O(Rd?) . (6)

"=H,0-7) " H

On the other hand, a small Rossby number expansion of the advective derivative in
(5) gives D/ Dt = 8;+u -V +O(Ro), where u = % x V) is the geostrophic velocity,
which is the analog of the E x B plasma drift velocity, 9 is the streamfunction, and
¢ = V. Accordingly, to first order in Ro the potential vorticity conservation law
in (5) becomes the guasigeostrophic equation:

L,

N

(@

= N\

n L = constant

\/\J

[

FIGURE 1. Because of charge conservation, when the plasma column shown in (a) is displaced
to a region of large L it experiences a transverse compression. This effect is analogous to the
vortex stretching experienced by a fluid column due to topography variations in geophysical flows
as illustrated in (b). At the same time, topography variations are equivalent to variations of the
Coriolis parameter with latitude as illustrated in (c).
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Vi " 200" Oy
-~ +{w,vw}—<—7— 25 =0 (7)
where the prime denotes derivative with respect to r. Writing ¢ = wo(r)+1/~)(r, 6,1),
we get the linearized version of Eq. (7)

oV 27 ~ o 20A"\ oY
—ar+{¢o,v¢}+{¢7v’¢o}—(7> 36 =0 (8)
Note that Eq. (2) is different from Eq. (7), but the linearized drift-Poisson model
(3) is identical to the linearized quasigeostrophic equation (8) if we make the iden-
tification 2QA'(r) > Ly(r) no(r)/Lo(r). In particular, for Ly in (4) with £ > 0,
A(r) is maximum at 7 = 0 and decreases with r.

Coriolis parameter variation. When considering quasigeostrophic motion
on an sphere, the variation of the Coriolis force with latitude has to be taken into
account. In particular, the term 2 in Eq. (5) has to be replaced by the Coriolis
parameter f = 2Qsinp, where  is the latitude angle. Let ¢, denote a reference
latitude angle and write ¢ = ¢+ dp. Then, neglecting free surface and topography
effects (n = A = 0), we can expand the potential vorticity as

1
0= n B — v+ 0] )

where fy = 2Qsin g, § and -y are constants, and 7 = dp R with R the radius of the
earth. As shown in Fig. 1-(c), at mid-latitude cos ¢y # 0 and ¢ = fy+(+ fr. This
is the so-called -plane approximation [6]. However, near the poles cos gy = 0 and
thus ¢ = fo+(—~r? which is known as the y—plane approximation [7,8]. Comparing
Egs. (6) and (9) we have that the variations of the Coriolis parameter in the earth
can be mimicked by topography variations if we identify A(r) + fr — 2472
This identification is the guiding principle in the modeling of geophysical flows
with laboratory experiments. In the plasma physics case the analogy is based on
the identification 8 — 2yr « L(r) no(r)/Lo(r). In particular, for ny = constant,
and Lgy(r) given in Eq. (4) we have, in the small curvature limit, 8 = 0 and
v = ngk. It should be remarked that this analogy is different from the well-
known analogy between the Hasegawa-Mima equation for plasma drift waves and
the quasigeostrophic equation.

ROSSBY WAVES

According to the modified drift-Poisson model, Eq. (1), a nonconstant plasma
length induces a variation of the plasma density. This density variation provides the
restoring mechanism of a new class of plasma waves in nonneutral plasmas which
are the analog of Rossby waves in geophysical fluid dynamics. As an example of
this kind of waves consider traveling wave solutions of the form
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& = ¢o(7) + &1 (r,mb — wt) . (10)
Substituting (10) into Eq. (2) we get

{#0 = wr?/2m, LoV} + {61, LoV} +{d1, LoV} =0 (11)

In what follows we construct linear and nonlinear solutions of this equation.
Linear solutions Let

do = Q7?/2, b = f(r) gimé—wt) (12)

for r < 7, < 1, where rp is the plasma radius, i.e. ng = 2Q for r < 7p, and
ng = 0 for 7 > r,. Substituting (12) into Eq. (11) and neglecting the nonlinear
term {¢1, Lo(r)V?¢1} we get the following eigenvalue problem for f:

f”+%f’+[D2/\(r)—%2-] f=0, (13)

where we have defined D = /4mQ/ (mQ — w) and A(r) = —Ly(r)/2rLo(r). Equa-
tion (13) can be solved numerically. However, if A is constant this equation reduces
to Bessel’s equation. This can happen for Lo(r) in Eq. (4) in the small curvature
limit, or if Lo(r) is gaussian. In the first case, ¢1 = BJn(Dy/kr)expi(mf — wt),
where J,, is the Bessel function of order m. On the other hand, the solution of
the vacuum equation V2¢ =0, is ¢ = C (r™™ — ™) eim?~wt)  Matching these two
solutions using the “jump” conditions [¢] = 0, and [r(Q — w/m)¢' — ne(r)d] = 0,
where [f] = f(rp +0) — f(rp — 0) denotes the jump, we get the dispersion relation:

4 2
W = M2 (1— 'Zr‘”> , (14)

Pmn

FIGURE 2. Rossby waves in nonneutral plasma. The figure shows contour plots of plasma,
density according to the traveling wave solution in Egs. (10) and (12). The + () sign labels the
regions where V2, > V2¢o (V3¢ < V3¢p).
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where p,., is determined from the solution of

Y] 1 1 _ 2m
[M - 1] Jm(pmn) = Om Panrln(pmn) ) Qm = — ( ‘> ) . (15)
P

2
2nrp

The direction of propagation of these waves depends on the sign of . For x >
0, which is the usual case, w/m < Q. The same happens with Rossby waves
whose direction of propagation depends on the sign of the topography or Coriolis
parameter gradient. Figure 2 shows contour plots of this solution for 7, = 1 and
small k. According to the geophysical fluids analogy A\(r) &> —A'(r)/2r < —(/2r+
%, and thus we have the Bessel’s function solution when A is a quadratic function
or in the y—plane approximation.

The main difference between these Rossby modes and the modes of Ref. [9] is
that the Rossby modes are z-independent compressional modes whereas the 2-
independent modes of Ref. [9] are incompressible. Also, the radial dependence of
the Rossby modes introduces a radial wave number which has no spheroidal mode
analogue.

Nonlinear solutions According to (13), ¢, in (12) satisfies

!
Lo('f') V2¢1 = LOTE‘Tl D2 ¢1 . (16)
For Ly(r) in {(4), the right hand side of Eq. (16) is proportional to ¢ and (12)-
(13) becomes an exact nonlinear solution because the term {#, Lo(r) V¢ } in (11)
vanishes. This nonlinear solution is a special case of solutions of the form

¢ =sr?/2m+x(r,mb—st) ,  Lo(r) [V2x +2s/m] = F(x) (17)

where s is a constant, and F is an arbitrary function of x. In geophysical flows a
nonlinear solution of the form (12)—(13) also exists in the y-plane approximation
or when A(r) is a quadratic function.
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Equilibrium particle orbits in
nonneutral plasmas

Ross L. Spencer

Department of Physics and Astronomy
Brigham Young University
Provo, Utah 84602

Abstract. An approximate analytic expression for the unperturbed orbits in a nonneu-
tral plasma is obtained The approximate orbits consist of a constant-velocity portion
inside the plasma and a sinusoidal turn-around portion in the plasma end.

INTRODUCTION

To carry out kinetic theory in nonneutral plasmas a knowledge of the equilib-
rium (unperturbed) particle orbits is required [1]. An analysis of these orbits for
nonneutral plasmas with small Debye lengths compared to plasma size will be pre-
sented here. In addition, it will be shown that a simple model does a good job of
representing these orbits. This simple model, consisting of constant velocity in the
plasma interior and harmonic motion in the end, should make it possible to make
analytic progress on the problem of a kinetic theory for these plasmas.

PLASMA EQUILIBRIUM

Consider a nonneutral plasma with midplane radius r,, axial half-length z,. It
is assumed to be cold enough that Ap < rp,z,. It is also assumed to be in global
thermal equilibrium so that the density distribution as a function of distance normal
to the plasma edge is the same at every point on the edge [2]. Under these conditions
the equation for the scaled electrostatic potential g = g¢/kT as a function of the
scaled axial coordinate { = z/Ap on the axis (r = 0) is

g'=1—¢e"7 , (1)

with g & 0 inside the plasma [2,3]. The solution of this equation satisfies g = 0
along the central axis of the plasma, but then g rises rather abruptly, on the scale
of the Debye length, through the plasma sheath. This causes the density, which is
proportional to 79, to fall to zero, defining the plasma edge.
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To solve this equation, first multiply it by ¢’ and integrate to obtain

d=\Plotem(—g) -1 = dc= dg @

V/2ly + exp(—g) — 1]

To integrate once more to get g(¢) would appear to be difficult, but a simple ap-
proximate result makes further progress possible. The g-integrand in this equation
has a remarkable power series:

1 1 1 g‘2 g3 g4
=—4 - - 3
J2gfexp(—g)—1) 9 *6 " T.oso T 12,960 " 181,440 T 3)

All of the higher order terms have very large denominators so that over the range
g € [0,4] an accuracy of about 1% is obtained from just the first two terms. Note
that this is the expected physical range for ¢ since the density is proportional to
e™9. This approximation leads to a simple approximate relation between ¢ and g:

¢ =1In(g/g0) + (9 — 90)/6 (4)

where go is the value of g at the place where we choose ¢ = 0. Since most of the
interesting physics is at the edge of the plasma it is convenient to set gy = In2
so ( = 0 wherc the density has half of its central value. But other choices are
sometimes used, so go will be left as a parameter.

It is a little awkward to have ((g) instead of g(¢), but Eq. (4) is easy to solve
numerically. A simple technique that works over most of the relevant values of ¢ is
simple successive approximation with under-relaxation:

Gnt1 = (1 — u)gn + ugoexp [( + (go — g4)/6] (5)

with u =1 for { < 0.5 and u = 2.5/(2 + ()] for ¢ > 0.5.

UNPERTURBED PARTICLE ORBITS

It is now possible to analyze the equilibrium motion of the particles. We will use
the dimensionless variables { = z/Ap, v = v/vy, = v/\/kT/m, and T = w,t, where
wp is the local plasma frequency in the center of the plasma and where Ap is the
Debye length there as well. Encrgy conservation at r = 0 is then simply

v =v"+29(() , (6)

where 14 is the scaled particle velocity when it is at the plasma midplane, and
where we have taken g ~ 0 in the center of the plasma. ( Note that this is an
approximation rather than an arbitrary choice of the zero of potential. We have
already determined the arbitrary additive constant in g by our choice of go. We
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may take g = 0 at the plasma midplane only because the Debye length is much less
than the plasma length so that g ~ 0 for all values of ¢ well inside the plasma. )
The turning point occurs when g(¢) = g, where

a=v/2 . )

The particle speed as a function of the scaled electrostatic potential g can now

be expressed as
d¢/dr = £\JLg - 29 . (8)

Using Egs. (8), (2), and the approximate form of (3) gives

wpl 1 o (1/g+1/6)dg (©)
4 V2 Va—g ’

where T is the time for one full cycle of the particle bounce motion and where the
lower limit g. is the exponentially small, but non-zero, value of g in the plasma
midplane. We can’t set it to zero here because its non-zero value is what makes
the integral include the time it takes for the particle to coast across the nearly

constant-potential interior of the plasma. Performing the integral (neglecting g.
except in a logarithmic term) then gives

w”Tzzg—lln(gc>Z—ZL-F['V—O-}--l—ln(%)—;qO—] ) (10)
4 6 o 44, Aplo 6 9o 61/

where we have used z = z, at { = 0 (where g = go by definition) and where we have
also used Eq. (4) to obtain 2z,/Ap ~ In(g./go) — g0o/6 . This formula has been
tested against exact particle periods in numerically-computed nonneutral plasma
equilibria, and has been found to be accurate to about 1% from very low velocities
up to v = 4vy, (for particles at 7 = 0).

It is useful to break the particle motion up into two parts. The first is the
nearly ballistic coasting of the particle across the plasma interior and the second
is the turnaround at the plasma end. Numerical experimentation shows that the
turnaround motion is well approximated (to better than 5%) by a half-period of
simple harmonic motion. A good way to fit these two kinds of motion together to
get an approximation to the real motion is to look at what happens in a quarter-
period of the particle motion. The particle is first assumed to travel ballistically
from z = 0 to z = L during time ¢ = t; = L/v. Then its motion is assumed
to be described by z(t) = L + Asinw(t — t4) where L, A and w; are still to be
determined. The three conditions that determine these constants are (i) that the
ballistic velocity match the initial velocity of the harmonic-motion portion:

Awy=v (11)

(ii) that the axial travel distance of the two parts of the motion equals the distance
from the center of the plasma to the turning point:
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L+A=z+4MpC , (12)

where (; = ((g.) is the valuc of { at the turning point; and (iii) that the ballistic
travel time and the quarter-period of the harmonic turnaround must add up to the
quarter period of the true motion:

T/4=Ljv+7/2w) . (13)

Solving these equations gives a good approximation to the particle motion along
the central axis of the plasma. At radii away from the axis they are modified because
the particle enters the thermal region at an angle, experiencing weaker gradients.
Because the density profile in the plasma edge is approximately invariant as a
function of normal distance [2], and since the edge is thin compared to the plasma
size, a particle at a radius where the angle between the z-axis and the normal in the
edge is # approximately moves axially in the scaled potential function g{( cos#8).
Repeating the period calculation in Eqgs. (8) and (9) then shows that in the end the
turn-around time is increased by a factor of cos . A careful analysis of this effect,
leaving the drift time across the plasma interior unchanged and modifying the end
dynamics, simply leaves the first term on the right side of Eq. (10) unchanged
and divides the last three terms in square brackets by cos f. Solving the equations
taking this effect into account finally gives

_wp(m = 2)(v/vin) cos §

Wy = 402 + (v/on)?/6 , A= v/wt s (14)
and
AD v? (m —4) v? g 4In2
L= I _ % _ ,
#(r) + cos § [n (2gov;"h) + (m—2)12v3 6 (7—2) (15)

where 6 is the angle between the normal to the plasma surface and the z-axis.
Note that w; o« v, with a small non-linear correction, and that this turn-around
frequency is on the order of the plasma frequency.

Figure 1 on the next page shows a comparison of two typical sets of particle phase-
space orbits from a numerical simulation using a computed thermal equilibrium
with this approximation. As can be seen, the approximation works quite well,
except at the larger velocities at r # 0 where the errors are on the order of 10%.
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Figure 1:  Orbits from a simulation (solid circles) and from the analytic model
(crosses) are compared. The § = 0 case is at r = 0 and the other is at finite
radius. The symbols mark time along the orbit and zy is 2z, at r = 0. The
discrepancy in distance along the orbits between the circles and the crosses is due
to the approximate orbit period not being quite right, and is worse for r # 0.

CONCLUSION

A simple approximate form for equilibrium particle orbits in nonneutral plasmas
has been found. The time it takes for a particle to turn around in the end of the
plasma is of order 1/w,. For Penning trap plasmas of medium aspect ratio, for
which the mode frequencies are typically comparable to w,, the physics of the end
should be quite important. In long plasmas the mode frequencies are much less
than w,, but even though the turnaround time is very short compared to the mode
period for these plasmas, it is still possible that this small end effect could have a
strong effect on the also-small damping rates. In any case, these orbits should be
a valuable tool for doing kinetic theory in nonneutral plasmas.
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Abstract.

A “rotating wall” voltage varying as exp(ims0 + ik, z — 2% ft) can give steady-state
confinement of more than 10° charges in a Penning-Malmberg trap at 4 Tesla. For both
pure ion plasmas and pure electron plasmas, the torque exerted on the plasma by the
rotating wall exhibits peaks at the frequencies of k; # 0 Trivelpiece-Gould modes [1].
As expected, modes with f > mg fr (i.e. propagating faster than the plasma rotation)
give positive torque and cause plasma compression; and modes with f < myfg give
adverse torque and cause plasma expansion. The rotating wall drive also causes plasma
heating, but cyclotron radiation (in the electron case) and collisions with background
residual neutral gas (in the ion case) keep the temperature low enough that background
ionization is negligible. The rotating wall “slip” is typically greater for electrons than
for ions, because f —mgfr is proportional to the plasma frequency wp. This contrasts
with the k, = 0 rotating wall perturbation which couples to crystallized ion plasmas
with no slip [2]. By increasing the frequency of the rotating wall, we observed a plasma
central density compression of about a factor of 20. These techniques may be useful
for a variety of trapping experiments.

INTRODUCTION

Non-neutral electron or ion plasmas confined in Penning-Malmberg traps have

inherent confinement times which are long, but finite. In practice, background
neutral gas and small confinement field asymmetries exert a drag on the rotating
plasma, causing slow radial expansion and eventual particle loss. Previous work
[3] on small ion plasmas has demonstrated radial compression and steady-state
confinement using laser techniques to apply a torque which counteracts the drag
on the plasma. However, there is considerable interest in containment of elementary

particles, including antimatter (4], where laser techniques are not applicable.
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Recently, “rotating wall” electric fields applied to the end of a column of 10°
Mg™" ions have been shown to give steady-state confinement and compression up
to 20% of the Brillouin density limit ng; [5]. The E x B rotation rate fz of the
lons is observed to be somewhat less than the wall rotation frequency f,,, with a
“slip” frequency Af = fr — f, varying with ion temperature as Af oc TV2. Here
the rotation frequency fr can be approximated by fr ~ fr when the diamagnetic
and centrifugal drift terms are small. The rotating wall technique has also been
applied to spheroidal ion plasmas in the strongly correlated or crystalline regimes
[2]; here, the applied perturbation was axially uniform along the plasma (k. = 0),
and the plasma rotation was generally observed to be phase-locked to the rotating
field (i.e. Af =0).

Previously, modest density and angular momentum changes of electron columns
were reported [6] when an applied dipolar perturbation excited a plasma mode;
but strong plasma heating limited the technique at low magnetic fields. Other
experiments [7] utilize this heating to replenish the electron plasma by ionization.

In this paper, we describe electron plasmas and magnesium ion plasmas confined
by rotating dipole (my = 1) and quadrupole (my = 2) electric fields applied at one
end of the plasma column. We show that the rotating wall fields apply a torque
which can be used to compress or expand the plasma, and the torque is shown
to arise from Trivelpiece-Gould plasma modes. The rotating wall fields also cause
plasma heating: for electron plasmas the cyclotron radiation cooling at B = 4T
keeps the plasma temperature low; for ion plasmas, collisions with neutral gas or
laser cooling keeps the ion temperature low.

APPARATUS

Figure 1 shows the “IV” Penning-Malmberg trap consisting of cylindrical elec-
trodes in ultra-high vacuum (P = 3 x 10™°® Torr, 97% Hy), in a uniform axial
magnetic field (B = 4T). This apparatus can contain Mg* ions continuously diag-
nosed by laser-induced fluorescence [8], or contain only electrons and operate in a
standard inject/hold/dump-and-measure cycle [9].

Electron injection from a thoriated tungsten filament gives N,y & 3 x 10° elec-
trons in a column of length L, ~ 35 cm and radius R, =~ 0.27 cm, with central
density ng ~ 4 x 10® cm™3. The electron plasma density profile n(r) and an es-
timate of the thermal energy T are obtained by dumping the plasma axially and
measuring the charge passing through a hole in a (rotatable) collimator plate [10].
Both measurements require shot-to-shot reproducibility of the injected plasma, and
we typically obtain variability én/n < 1%.

For ion experiments, a metal vacuum vapor arc (MEVVA) source is used to create
Niot = 5 x 10® ions in a typical column length L, ~ 14 cm and radius R, ~ 0.5 cm
with a central density ny ~ 5 x 107 cm™3. The ion plasma is diagnosed by a CW
laser (~ 280 nm) scanning through a 325;/, — 32P;, cyclic transition of Mg* at
each radial position. The Doppler-broadened and -shifted laser induced fluorescence
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Figure 1. Schematic diagram of the cylindrical trap, with inset representing the
rotating wall drive on sectored cylinder S8.

signal gives the ion velocity distribution f(v). From the measured ion distribution
f(v,7,1t), we obtain the local magnesium density n(r) and temperature T(r).

Figure 2 shows the radial electron density profile () for the initial plasma 5
sec after injection, and profiles after plasma expansion (E) or compression (C) as
described below.

RESULTS

The rotating wall drive consists of sinusoidal voltages ®,,; = A,, cos(mg;—27 fst)
applied to the eight sectors at 8; = 27j/8. Here, f is the signal generator frequency,
and the wall perturbation effectively rotates at f, = fs/mq.

In practice, inherent “background” asymmetries in the magnetic or electric
confinement fields [11] exert a weak drag on the rotating plasma, causing a de-
crease in angular momentum and a bulk expansion of the plasma. For elec-
trons, measurements show that this “mobility” expansion rate scales roughly as
71 = —(ng/no)bg & (6 % 107 sec™!)(ng/10® cm™3)? for the electron columns
described here (L, = 35 cm, B = 4T). To maintain or compress the plasma, the
rotating wall drive mpst supply a positive torque as large or larger than this drag;
alternately, a reverse-rotating drive can substantially increase the background ex-
pansion rate.

We find that the applied drive couples to the plasma through discrete k, # 0
Trivelpiece-Gould (T-G) plasma mode resonances [12]. Figure 3 shows the mea-
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Figure 2. Electron radial density profile for injected plasma (I), a compressed
plasma (C), and an expanded plasma (E).

sured peaks in the compression rate versus drive frequency when a strong drive of
amplitude A,, = 0.4V is applied to the injected plasma profile. Here, an my = 1
rotating drive at a chosen frequency is applied to the sectored electrode S8 for 5
sec, and the initial compression (or expansion) rate 79/ng is measured. The mea-
sured background expansion rate of (i/no)pxs = —4 x 107% sec™! (somewhat less
than expected from the n? scaling) has been subtracted from the data, so the plot
indicates torque from the rotating drive alone. Two strong compression peaks and
one broader compression region are observed; and two negative torque peaks are
clearly visible in the reverse drive direction. Figure 3 also shows the rate of temper-
ature change 7', suggesting that the drive causes general heating as well as heating
directly associated with T-G mode resonances. These temperature changes shift
and broaden the T-G modes, making precise comparison with theory difficult.

For comparison to linear mode theory, we apply a weak my = 1 rotating wall, with
Ay = 0.025V. The resulting compression peaks are shown in Fig. 4. This small am-
plitude drive does not measurably heat the plasma, so the temperature remains low,
with T'~ 0.1 —-0.2 eV. We observe many narrow T-G compression peaks, and these
correspond closely with observed mode transmission peaks, i.e. 10~30dB enhance-
ment in the wave signal received at S4. The observed mode transmission peaks,
launched with S8 and detected with S4, correspond closely with numerical drift-
kinetic predictions for T-G plasma modes varying as h(r, m,) exp(imef-+im, zr/L,)
where h(r, m,) represents the radial eigenfunction with m, zeros (counting the one
at 7 = 0). The six observed wave transmission and plasma compression peaks
agree quantitatively with the (m,, m,) mode frequencies calculated numerically us-
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Figure 3. Electron density compression rate ng/nq for a strong mp = 1 drive. The
compression peaks are associated with shifted (m., m,) modes. The open diamonds
represent the associated heating rate T'.

ing two “fit” parameters of Nyt = 2.7 X 10° and T = 0.1eV. These parameters
are consistent with the measured Ny = (3 £0.6) x 10° and T = 0.1 — 0.2¢V.
This correspondence has been further verified by varying the plasma length and by
tailoring the antenna configuration to distinguish even and odd m,.

The T-G modes for long columns within a cylindrical wall are predicted to have a
rotationally-shifted “acoustic” dispersion relation, with frequency f given approx-
imately by

™m,

Ly

f—mfr = ;—; R, ——g(m,,T) . 1)
The left hand side of Eq. (1) represents the frequency of the mode in the plasma
rotating frame fg, which can be approximated by fr ~ fr when the diamagnetic
and centrifugal drift terms are small. The shifted frequencies are proportional to
N}? through w, = [47ne?/m]"/? and R,, are proportional to k, = nm./L,, and
depend functionally on T and m,. In contrast, the radial density profile n(r) and
absolute column size R, have little effect on the mode frequencies except through
fr.

The magnesium ion analog of Fig. 4 showing compression peaks corresponding
to T-G modes can be found in Ref. [13]. Also, Figure 4 of Ref. [5] shows ion
compression with a strong drive; here, the peak due to T-G modes is so broad that
only one bump can be seen for f; > fr. This broadening due to large amplitude

and heating effects hindered the identification of T-G mode coupling in the original
data.
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Figure 4. Electron density compression rate for a weak mgy = 1 drive, compared
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The rotating wall technique enables practical plasma manipulation; for example,
Fig. 5 demonstrates plasma compression (solid dots) by slowly ramping the drive
frequency from 0.5 to 2.13 MHz in 1000 seconds. From 0.5 MHz to 0.65 MHz,
the central density slowly decreases, indicating that there is no significant torque
from the rotating wall drive and that no torque-balanced equilibrium is reached.
From 0.65 MHz to 1.95 MHz, the torque provided by the rotating wall coupling
through the (1,2) mode exactly balances the background drags, and the plasma is
in equilibrium with the drive. Above 1.95 MHz, the background drags are larger
than the rotating wall torque, and the plasma expands rapidly before reaching a
new equilibrium with torque coupled through the (2,2) mode.

One should emphasize that quadrupole rotating perturbation (my = 2) works as
well, and that a central density compression of a factor of 20 has been reported [1].
It is also apparent that my = 2 tends to heat electron plasmas less than my = 1,
perhaps because f,, = fs/my is smaller.

The nonlinear nature of the coupling to the (1,1) mode is shown in Fig. 6. The
measured compression rate (dots) scales as fig/ng ox AL! for the experimentally
accessible range of A, > 0.025V. To understand this result, we measured the
amplitude A, of the received signal in a transmission experiment, and obtained
scalings of Ay o AL! for 4, < 0.02V and A o AY for A, > 0.03V.

Simple perturbation theory suggests that the compression should scale as
(no/ng) o én - 6y - cos(¢), where én is the plasma density perturbation (with
0n  Arec), 01 is the applied potential perturbation (with §1) < A,), and ¢ is the
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Figure 5. Electron central density ng and temperature T' during a ramped my = 1
drive.

phase shift between dn and 81 (with measurements showing ¢ = const). Since the
density perturbation &n is observed to be saturated for A,, > 0.03V, the observation
that ng/ne o< AL, is consistent with this theory perspective.

A summary of the ion and electron density compression obtained by slowly ramp-
ing the frequency of the rotating wall is shown in Fig. 7. The ions reach a density
ng ~ 0.1np;; note that with shorter plasmas, densities up to no = 0.23 ng; were
obtained [5]. The slip in the ion case is a lot smaller than in the electron case.
This is expected, since Eq. (1) suggests that the slip is proportional to the plasma
frequency, and wpe ~ 210 wyMgs. The jon temperature exhibits peaks that we
identify as mg = 0 T-G mode due to a weak (undesired) mg = 0 component of the
rotating wall drive. For the electrons, no similar peaks were observed because the
first mgy = 0 T-G mode is above 2 MHz.

We have interpreted the rotating wall coupling as a collective effect, in contrast
with “side band cooling” which is interpreted as a single particle effect, i.e. the
energy of a single particle transferred from the magnetron motion into damped
axial or cyclotron motion.

A rotating wall technique has also been applied to spheroidal ion crystals [2]
using an axially uniform rotating electric field. Here, the torque is applied to a
solid object, and in this “rotating brick” case, the crystal rotation was generally
observed to be phase locked with the rotating field [2]. For an electron plasma,
finite slip is required to apply a torque on the fluid; the T-G modes rotate faster
(or slower) than the plasma, and the angular momentum carried by the wave is
transferred to the particles. However, further experiments will be needed to clarify
the distinction between the finite-slip k, # 0 couplings described here and the zero
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slip k, = 0 coupling obtained with spheroidal coulomb ion crystals. Further, the
wave-particle interaction which generates the torque is not understood theoretically:
if the interaction is essentially Landau damping, the measurements imply that this
damping is not in the linear regime. Further experiments may clarify this issue.
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Grant PHY-9876999.

REFERENCES

[

. Anderegg, F. et al., Phys. Rev. Lett. 81, 4875 (1998).

2. Huang, X-P. et al., Phys. Rev. Lett. 80, 73 (1998); Mitchell, T.B. et al., Science
282, 1290 (1988).

3. Heinzen, D.J., Bollinger, J.J., Moore, F.L., Itano, W.M. and Wineland, D.J., Phys.
Rev. Lett. 66, 2080 (1991).

4. Hall, D.S. and Gabrielse, G., Phys. Rev. Lett. 77, 1962 (1996); ATHENA Collabo-
ration, Hyperfine Interactions 109, 1 (1997). See also Gabrielse, G. et al. and Fine,
K.S. et al. in this proceedings.

5. Huang, X.-P., Anderegg, F., Hollmann, E.M., Driscoll, C.F. and O’Neil, T.M., Phys.
Rev. Lett. 78, 875 (1997). ’

6. Eggleston, D.L., O’Neil, T.M. and Malmberg, J.H., Phys. Rev. Lett. 53, 982 (1984);
Mitchell, T.B., Ph.D. Thesis, UCSD (1993).

7. Pollock, R.E. and Anderegg, F., Non-Neutral Plasma Physics II, ATP Coinf. Proc.
331, edited by J. Fajans and D.H.E. Dubin (AIP, New York, 1994), p. 139. See also
Pollock, R.E. et al. in this proceedings.

8. Anderegg, F., Huang, X.-P., Sarid, E. and Driscoll, C.F., Rev. Sci. Instrum. 68, 2367
(1997).

9. deGrassie, J.S. and Malmberg, J.H., Phys. Fluids 23, 63 (1980).

10. Beck, B.R., Fajans, J. and Malmberg, J.H., Phys. Plas. 3, 1250 (1996); Eggleston,
D.L., Driscoll, C.F., Beck, B.R., Hyatt, A.W. and Malmberg, J.H., Phys. Fluids B
4, 2432 (1992).

11. Driscoll, C.F., Fine, K.S. and Malmberg, J.H., Phys. Fluids 29, 2015 (1986).

12. Prasad, S.A. and O’Neil, T.M., Phys. Fluids 26, 665 (1983); Trivelpiece, A.W. and
Gould, R.W., J. Appl. Phys. 30, 1784 (1959).

13. Hollmann, E.M., Anderegg, F. and Driscoll, C.F., “Confinement and manipulation

of nonneutral plasma using T-G modes driven by rotating electric field,” to be sub-

mitted to Physics of Plasmas. '

169



Wave Angular Momentum in
Nonneutral Plasmas

Roy W. Gould
California Institute of Technology, Pasadena, CA 91125

Abstract. Angular momentum and energy are added (or removed) when exciting a mode, such
as a diocotron, Trivelpiece-Gould, or Dubin mode, and we discuss rates at which mode angular
momentum and energy are added by applied fields. Excitaticn of a plasma mode is an effective
way to transfer angular momentum and energy to the plasma because it is a resonant process.
We relate this to recent experiments on compression and expansion of plasmas using a "rotating
wall” field. We also calculate the torque on a Coulomb crystal which is phase-locked to a
"rotating wall" field and describe phase oscillations and the maximum rate of acceleration which
can be achieved.

Early experiments(1) showed that asymmetric applied potentials can cause particle
transport in nonneutral plasmas, and static field errors are thought to be responsible for
the anomalous loss of particles from traps. Collective modes, either time dependent or
static, can enhance the asymmetric fields responsible for this transport, and either
inward or outward transport can occur. Recent "rotating-wall" field experiments(2)
have brought some of these ideas into sharper focus by showing that nonneutral
plasmas can be contained indefinitely with such fields and that the angular momentum
transfer rates are much larger when the excitation frequency corresponds to one of the
Trivelpiece-Gould(TG) mode frequencies.

Theoretical attempts to understand transport have generally focussed on the details
of particle transport near resonant surfaces in the plasma(3). In this paper, we focus
instead on the angular momentum and energy added when a mode is excited. The
added angular momentum and energy is associated with a coherent wave perturbation
in the plasma. If the mode damps, the added wave angular momentum and energy then
become part of the equilibrium plasma. Dissipative processes are required for damping
and the details of these processes are important in determining exactly where the
momentum and energy is deposited within the plasma. However, it is useful to
separate the process of transferring angular momentum to the wave from its
redistribution within the plasma and to obtain transfer rates from properties of the
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modes. It is not actually necessary for the applied field to be a "rotating-wall" field, so
long as the mode excited has a rotating field. We obtain the transfer rates from a
susceptiblity, x, which is the ratio of oscillating charge induced on the wall to the
oscillating applied potential which excites the mode.

A spatially uniform cold electron plasma has acanonical angular momentum
P; = Nm(w, — we/2) <712 > ,where N is the total number of electrons of mass m,
w, is the rotation frequency, independent of r for a spatially uniform plasma, and
w. = eB,/m is the electron cyclotron frequency and < r2 > is the mean square radius
of the plasma fluid. The first term represents the mechanical part of the canonical
angular momentum and the second term represents the magnetic part. For plasmas
obeying the drift approximation (wr < w./2), the latter term islarger than the former,
so that the canonical angular momentum is actually negative. Thus a positive torque,
‘which increases the canonical angular momentum, decreases the magnitude of the
angular momentum and therefore < 12>, thereby compressing the plasma.
However, when w, > w./2, P, > 0 and a positive torque expands the plasma. While
we discuss an electron plasma here, these ideas and results are applicable to ion
plasmas with appropriate changes in sign of various quantities.

We can calculate the torque T on the plasma either by integrating the moment of the
electric force over the volume V of the plasma, or by integrating the stress tensor over
a surface S (the negative of the torque on the wall charges) outside the plasma at the
wall. We can also calculate P, the power input to the plasma, from the wall potential
times the inward displacement current at the wall:

T= — fVTneEodV =€ [gE BgbdS = %Re[imErmkd’:nk]S
P = — 6o fs 224 dS = 4ReliwB,id]]S.

where S = 2w bL is cylindrical surface at r =5, the wall and length L, so that
k = kn = nw/L (periodic boundary conditions). The wave torque involves quadratic
wave quantities, such as the field E, times the perturbed E. of the wave,
~ expli(mb + kz — wt). ¢py and E,, ;. are the complex amplitudes of the oscillating
wave potential and radial electric fields at the wall, respectively. Such fields travel
with angular velocity w/m. We regard ¢,,; as applied and E,,;; as the response and

define the response function, or susceptiblity, for a single wave with wave number pair
(m,k)as

rE

. ka(w) = - Bk lr:b

This allows us to write the torque and power input in terms of the applied potential as
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T= — %Re[imek(w)¢mk¢:nk]S
P = — S Re[iwXmi(w) ¢ ]S

It follows from these relations that P/T = w/m, the angular velocity of the rotating
field. Both P and T are quadratic in the applied potential.

We anticipate that y,,,.(w) will have poles at the mode frequencies, with one pole
for each radial eigenmode (whose number is denoted by ), and to be of the form,

Xoni(W) = ; (—-—EL + other terms

=W+ Yy

Wimks> Rimk» and 7, are the frequency, residue or coupling strength, and damping rate
of themode with radial, azimuthal, and axial mode numbers (I, m, k). These are
measurable quantities. If we focus on just one mode, hence one term in this series, this
is the classic case of an oscillator driven by a sine wave. For a dissipationless plasma,
Yimk = 0, and the susceptibility function will be purely real, with poles at the mode
frequencies. Then there is continuous increase, or decrease, of angular momentum and
energy of the mode only if the applied frequency is exactly equal to a mode frequency.
With damping, the sfeady input rate at resonance is proportional to Ry,,,;./ Virmk-

The sign of Ry, determines the direction of the transfer. When R, is negative,
transfer is to the plasma, and when R, is positive, transfer is from the plasma. When
Yimk = 0 and at exact resonance, the oscillator is continuously excited until the pulse
ends. Off resonance, there is transfer to and from the mode at the difference frequency
with a net transfer to the plasma if R,,,; < 0 and from the plasma if Ry > 0. Foran
applied pulse whose length is short compared to the beat period there will be a
momentum transfer to or from the plasma, depending on the sign of R, so long as
the pulse has frequency components at one of the mode frequencies.

We note that the input admittance of a patch electrode can be written in the form
. 2
Y(w)= — annlsmnl Xorn (W)

where Smy is a "structure” factor for the patch with k = nw/L. This includes all of the
modes and is a measureable quantity. In this connection we again note it is not
necessary for the applied field to be rotating in order to excite a mode which rotates.

To obtain x,,.(w) one must solve the potential equation within the plasma and
surrounding vacuum regions for a sinusoidally varying potential applied to the wall
electrode. x,,.(w)is simply the negative of the logarthmic derivative of & at the wall.
For this discussion, we consider a cold uniform plasma cylinder of radius a. The
potential equation isV - € - V@ = 0, where € = €(w) is the linear dielectric tensor for
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sinusoidally varying fields. The methods for solving this equation when ® = Oatthe
wall (r = b), and the for modes which result, have been discussed extensively in the
literature(4,5). This model has -, = 0. It is straightforward to obtain the solution
when there is an applied time-varying potential applied on the wall, and to obtain

F(w)+G
Xmi(w) = G3 FE:;::G:

_ Tg [ Im(Ta) &b Im(kC) K (ka)— Ko (kc)In(ka)
Fl) = a@Rlzmlte@ Gi=ag T ko Tm(ka)—Ly(ke) Kmiia)
G, =k In(kc) K (ka)—Km(kc) I (ka) G. = K' ! (k) Im(ka)~ Iy (kS) Km(ka)
2= 7”-Km(kc)Im(ka)——Im(kc)Km(ka) 3T Km(kc)Im(ka)——Im(kc)Km(ka)’

with T% = — k?e;(w)/e;(w). Primes denote derivatives with respect to the argument.
F(w) contains all of the frequency dependent terms and properties of the plasma and
G4, G, and G3 depend only on the wave numbers m and k and the dimensions a and
b. The components of the dielectric tensor are given in Ref. 5. The poles of ., (w)
give the mode frequencies and are obtained from the solution of F(w) + G5=0. F(w),
and thus x;,,,(w), has alternating poles and zeros for real frequencies because of the
Bessel functions. They are clustered about about w = muw, for small ka , becoming
very dense at this frequency. Since mand k = nma/L are fixed, these various poles
correspond to higher order radial modes, with increasing number of radial nodes,
characterized by radial mode number I. There is also one isolated mode, the diocotron
mode withw = wr[1 — (a/b)*™] for ka = 0. Coupling to the latter is quite large.

It is straightforward to obtain the frequencies and residues for each of these poles
numerically. Illustrative results are shown in Figures 1a and 1b, respectively. Both are
in units of wr, the rotation frequency. Only the lowest few T-G modes and the one

10 . fast
T-G modes 1
5 .
@ o\ . .
®, R ——
Diocotron slow
-5 mode
_1 0 | | | ‘ | l
0 1 2 3

FIGURE 1a. Mode Frequencies in units of w, versus ka form = 2, b/a = 2, wy/wr = 10.
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FIGURE 1b. Residues in units of w, versus ka form = 2, b/a = 2, wp/w, = 10.

diocotron mode are shown. Higher modes have frequencies closer to mw, and even
smaller residues. These fall in the shaded regions of the figures. Fast modes, those
whose fields rotate faster than plasma rotation (w/m > wr) have negative residues,
while slow modes (w/m < wr) have positive residues. Thus the excitation of a fast
mode adds angular momentum so that a fast wave has positive angular momentum.
Similarly, the excitation of a slow mode removes angular momentum so that a slow
wave has negative angular momentum.

For ka <« 1, the dispersion relation of the [l'th radial TG eigenmode is
Wimn, = Mwr £ ka (wp/ py) , Where p,, is the [-throot of Jm(z) = 0. Similarly,
Rk,mn = Olm wr (ka)a'

A similar expression has been obtained for the susceptiblity of spheroidal plasmas,
using the methods of Ref. 5. LeGendere functions replace the Bessel functions.

It has recently been shown the rotation of a Coulomb crystal can be phase-locked to
a rotating wall field(6) and that this is a very useful technique. Here we calculate the
torque on an ideal Coulomb crystal. The effective potential of the applied trap field is
static in a frame rotating with the field and has the following form

0 = Vg [+ Bp?] + Vi Bl Bl cos(my).

where V = mw?/2e, with w, the single particle axial bounce frequency of the trap and
Vi the amplitude of the rotating multipole potential at the crystal boundary, £, = b,

&, = 0. In equilibrium, the crystal adjusts its so as to produce a potential ®, which just
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cancels ®, inside the crystal. This gives a spheroid(6), of radius a and half-length b,
with a slight deformation of its surface arising from the second term. The deformation
can be characterized by its surface charge,

— m(6=0) Fr(&)
0 = neead SRRSO cos[m(¢ + Ad)),

where § is the fractional distortion in the radius a, h; is the element of the metric
tensor associated with £,. In equilibrium, A¢ = 0, and the torque on this surface
charge vanishes. However, if this charge distribution is rotated (ahead) through an
angle A¢ from the equilibrium position without significant change in shape, then the
torque T = [, pEydq is non-zero and is

T = cmQ,Vid sin(mAd) = — Tas sin(mAP)

where @, is the total charge of the crystal, and ¢, = (3m/4) ffll PI(€)/Pm(0)}Pde

= 8/5for m = 2. V)is proportional to § so that the torque is quadratic in §. This
torque acts to speed or slow the rotation, according to the sign of m/A¢ and keep the
crystal rotating, on the average, with the applied field. However there may be small
amplitude phase oscillations and there is a maximum torque Trma, Which governs the
maximum rate at which the crystal rotation can be accelerated. Both also depend on the
moment of inertia of the crystal, and phase oscillations are probably damped by
viscous effects: Phase oscillations might be excited by an abrupt change in phase of the
rotating field, and a study of the response of the system may yield useful properties of
the crystal, since the time required to come into a new equilibrium shape is not known.
Again, it should not be necessary for the applied field to be a "rotating wall" because
the rotating crystal will respond mainly to the rotating component of a standing wave
field whose angular velocity is close to that of the crystal.
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Abstract.

The autoresonant (nonlinear phase locking) manipulation of the diocotron mode
in a non-neutral plasma is investigated. Autoresonance is a very general phenomena
in driven nonlinear oscillator and wave systems. By sweeping or chirping the drive
frequency, autoresonance allows the amplitude of a nonlinear wave to be controlled
without the use of feedback. The experimental results, including a novel scaling rela-
tion, are in excellent agreement with a simple theoretical model.

The oscillation frequency of a nonlinear, Duffing-like oscillator changes with am-
plitude. If you excite such an oscillator by driving it at its linear resonant frequency,
the oscillator’s amplitude will grow only marginally before its shifting frequency
causes it to go out of phase with its drive, after which the oscillator’s amplitude
will beat back down to zero. By measuring the oscillator’s instantaneous frequency
and phase, you could use feedback to grow the oscillator’s amplitude arbitrarily.
But how can you grow the oscillator to high amplitude without feedback? A general
property of weakly-driven, nonlinear oscillators is that, under certain conditions,
they automatically stay in resonance with their drives even if the parameters of the
system vary in time and/or space. This phenomenon is called autoresonance.

The autoresonance concept dates back to McMillan [1} and Veksler 2], and was
further developed by Bohm and Foldy [3] for particle accelerators. The term “phase
stability principle” was used to describe the phenomenon in these early studies.
The synchrotron, synchrocyclotron {4], and other, later acceleration schemes [5,6]
all are based on autoresonance. Recently, the effect has been studied theoretically
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in atomic and molecular physics [7,8], nonlinear dynamics [9,10], nonlinear waves
[11] and fluid dynamics [12].

Autoresonance also occurs for waves and modes. One system which can exhibit
autoresonance is the £ = 1 dioctotron mode, for which the mode frequency increases
with mode amplitude. If the mode is driven by a sufficiently large drive is applied to
an azimuthal sector, and if the drive frequency is chirped through the linear mode
frequency, the mode will be excited until it crashes into the trap wall [13] (see
Fig. 1) Once autoresonantly excited, chirping downwards will decrease the mode
amplitude. Autoresonance can also occur when the mode is driven by a single

frequency and the linear frequency of the mode decreases slowly due to plasma
expansion (see Fig. 2).

Mode
Amplitude

So v hr o

[—I =]

N Wb Ve Lo

Frequency
(kHz)

(=]

0.00 0.01 0.02 0.03 0.04 0.05
Time (s)

FIGURE 1. Autoresonant response to a swept drive. (a) Mode amplitude (b) Drive frequency
(solid line), measured linear resonant frequency (dashed line), and measured excitation frequencies
(o). The driving frequency is swept from 20kHz (well below the linear resonant frequency) to
45 kHz (well above the linear resonant frequency) in 0.067s and the drive amplitude is 0.5 Vp-p.
At first, the mode amplitude is small, and has frequency components at both the drive frequency
and the linear diocotron mode frequency. After the drive frequency passes the linear resonant
frequency, the amplitude grows autoresonantly, and only one frequency is present. Finally, the

amplitude grows large enough to send the plasma into the wall, and the mode frequency drops
precipitously.

Autoresonance will not occur when the drive frequency or system parameters
are changed too quickly or when the drive amplitude is too small. For a fixed
chirp rate A (the change in the drive frequency per second), there is a critical drive
amplitude V, below which the maximum mode amplitude is relatively small and
increases with the drive amplitude, and above which the mode amplitude follows
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FIGURE 2. Response to a constant frequency drive. Autoresonance occurs because the system’s
linear resonant frequency drops as the plasma expands. (a) Mode amplitude (b) Drive frequency
(solid line), measured linear resonant frequency (dashed line), and measured excitation frequencies
(e). The drive frequency is 27.4kHz and the drive amplitude is 0.04 Vp-p. The initial linear
diocotron frequency is 28.4 kHz, but plasma expansion causes the linear diocotron frequency to
drop {14] by about 14% in 0.5 seconds. (The background residual gas pressure was deliberately
sct high to increase the expansion rate.) Autoresonant growth occurs only after the linear mode
frequency has dropped to the drive frequency, at ¢ = 0.11s.

the drive frequency to high amplitude and is independent of the drive amplitude.
As shown in Fig. 3, the threshold is very sharp. Lower chirp rates have lower critical
drive amplitudes. Theoretically,

Va e A0'75, (1)

and is in excellent agreement with the data, as shown in Fig. 4.

The threshold exists because the autoresonantly driven mode can be modeled as a
pseudoparticle oscillating in a slowly-varying pseudopotential. The slowly-varying
Hamiltonian is:

H(®,A) = SA?/2 4 Viseudo(®), (2)
where the pseudopotential is
Vpseudo(é) = -—26.[8/2 cos ® + %é, (3)

and the slowly-varying inverse mass is
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FIGURE 3. Autoresonant response near threshold. (a) Mode amplitude D/Ry as a function of
time for drive amplitudes of 0.100, 0.190, 0.195, and 0.300 Vp-p. Note that the response to the
0.195 and 0.300 Vp-p drives is essentially identical. (b) Maximum mode amplitude as a function
of drive amplitude. Near the drive threshold voltage 0.193 Vp-p, the response is bimodal; some
shots stay low, while other shots go to high amplitude. (c¢) The fraction of shots near threshold
that go to high amplitude. All data are taken at a chirp rate of A =2 x 105 Hz/s.

S = wo+ —=r. (4)
21
The potential, Viseudo, l00ks like a tilted series of potential wells. Here & is the
phase of the pseudoparticle in the pseudopotential, A is the oscillation amplitude,
¢ is the drive strength, ¢ is the chirp rate, and I is the instanteous action.
Autoresonance will occur so long as the variations are slow and the pseudopo-
tential has wells. The depth of the wells depends on the chirp rate and the drive
amplitude, but also exhibits a minimum at an intermediate, but small value of the
action. This minimum can be observed experimentally as a minimum in the fre-
quency of oscillations of the action (see Fig. 5). If the chirp is too fast or the drive
too small, the wells will disappear altogether, leading to the threshold condition
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FIGURE 4. Critical amplitude Vy vs. chirp rate A . Measured results (o), and theoretical
prediction from Eq. (1) (solid line). The proportionality constant in Eq. (1) is fit to the data.
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FIGURE 5. Action vs. pseudoparticle oscillation frequency. The dots are measured experimen-

tally, and the line plots fose \113/25, where the position of the minimum and the frequency
at the minimum are fit to the data. The drive amplitude was 0.15 Vp-p. The discrepancy be-
tween the experiment and theory at large action is due to the supralinear terms in the nonlinear
frequency, which are not included in the weakly-nonlinear theory.

ie. to Eq. 1.
The experiments, theory and implications of this work is further described in two
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publications, Ref. [13] and Ref. [15]
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Abstract. We have been making measurements of nonlinear effects that occur in
the normal modes of electrostatic waves in a pure electron plasma. The two effects
described herc are (1) mode coupling between normal modes and (2) formation of
solitons from the normal modes. The coupling between the modes in the plasma occurs
because of the nonlinear terms in the continuity and momentum equations. We see the
coupling between the n, = 1 and n, = 2 modes in our plasma, where n; is the number
of half-wavelengths that fit into the plasma. These are the only two modes that have
close enough frequency matching to couple significantly. The predicted amplitude and
phase dependence of this coupling theory are verified in our data.

When normal modes are grown to large amplitudes, they can become solitons bounc-
ing between the ends of the system. We have measured these solitons and have shown
that they have the expected properties of solitons: when not interacting, they travel
faster than the linear wave speed in the plasma and they also show the phase delay
expected when they interact with each other. Because of the interaction between the
height of the soliton and its speed, solitons can only be grown from normal modes in
a limited amplitude range. Mode coupling can come into play with these solitons and
even cause onc to disappear.

INTRODUCTION

We have been studying electrostatic Trivelpiece-Gould modes in a nonncutral
plasma confined in a Malmberg-Penning trap [1]. Our plasma is 60 cm long and
about 2 cm in radius. The plasma temperature is about 1 ¢V [2]. The waves that
we have been studying have had large enough amplitudes that nonlinear effects
become important. Therc are two main nonlinear effects that we have observed:
(1) Coupling between different modes and (2) Solitons.

MODE COUPLING

The mode coupling we observe occurs betwcen the lowest frequency standing
waves. Because of our long, thin geometry these are basically Trivelpicce-Gould
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modes with close to an integral number of half-wavelengths in the plasma [3,4].
We identify these modes by their n, value, which can be defined as the number of
half-wavelength in the plasma. The lowest frequency mode has !/, wavelength in
the plasma, so it has an n, of 1. It has odd symmetry relative to the center of the
plasma. The next higher mode has one full wavelength in the plasma, so it has an
n, of 2. It has even symmetry relative to the center of the plasma.

Physical Mechanism of mode coupling

Product terms, such as V - (nv) in the continuity equation and v - Vv in the
momentum equation can create a drive for other modes, because they involve the
sum and difference frequencies. If the drive from these terms matches a mode’s
structure both spatially and temporally, then the driven mode can either grow or
shrink, depending on the phase relationship between the mode and the drive.

For example, if we have mostly the n, = 2 mode with just a little bit of the
n, = 1 mode present, this can cause the n, = 1 mode to grow to large amplitude.

Simple theory

Assume modes of the form

ny = npsin (wit)sin (ky z) (1)
Ny = Ngo sin (wqt + @) cos (kg 2) (2)

the corresponding velocities are

vy = DO s (wyt) cos (k1 2) (3)
Mo K1
vy = — X2 s (wat + @) sin (kq2) (4)
o kg

We put these into the continuity equation and find the terms that have the same
spatial and temporal dependence as the n; and n; modes. The result is that

Onie _ ToNzo

50 = gn w1 ¢ (5)
(97120 R nfo
5L = T an! cos ¢. (6)

Note that if the phase is in the right range the first equation leads to initial
exponential growth for the n, = 1 mode. If there is a small frequency mismatch
between the two modes, we define w = wy ~ 2w;. We can model this by having a
time dependent phase, ¢ = ¢o+ dwt in the above equations and it leads to alternate
periods of growth and decay.
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FIGURE 1. Mode conversion for 1 Volt drive. The upper plot shows the amplitude of the two
modes as a function of tirne. The lower plot shows the relative phase between the two modes.

Experimental Measurements

We launch these modes by oscillating the confining potentials at the end of the
plasma at the n, = 2 mode frequency. For these experiments we applied the same
oscillating potential to both ends, matching the even symmetry of the mode.

We observe the modes by measuring the image charge induced on the wall rings.
The amount of charge induced on an azimuthally symmetric ring is close to the
total charge under the ring, so what we measure is approximately

/:end n dz. (7)

Zbeg

Note that if a mode has a node centered under a ring, then we are insensitive to
that mode on that ring.

We recorded our data on two rings centered at £20 cm away from the center of
the plasma, approximately %/3 of the way from the center of the plasma to its end.
The rings were 10 cm Jong. It should be noted that this configuration is insensitive
to the n, = 3 mode because of the ring placement relative to the nodes of that
mode. The signals for the n,=1 and n.=2 modes can be separated by adding and
subtracting these two signals because of the symmetry of the modes. We observe
the image charge on these rings after the drive has stopped.

Figure 1 shows the amplitude of the two modes as a function of time when the
driving voltage is one volt. Note that the amplitude of the n,=1 mode grows and the
n.=2 mode goes to a smaller (but nonzero) value. The phase approaches ~%. When
the phase is £7, the mode conversion will stop because of the cos ¢ dependence in
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FIGURE 2. Mode conversion for 2 Volt drive. The upper plot shows the amplitude of the two
modes as a function of time. The lower plot shows the relative phase between the two modes.
The shaded regions show the times when the n; = 1 mode is shrinking and the n, = 2 mode is
growing.

equations 5 and 6. All of our one-volt data shows the phase eventually going to
one of these values.

Figure 2 shows the amplitude of the two modes when the driving voltage is two
volts. In this case we get conversion back and forth between the two modes as the
relative phase varies due to the frequency mismatch. Equations 5 and 6 predict
growth for the n, = 1 mode when cos ¢ is in the range from —5 to § and damping
when outside that range. The shaded areas on the lower curve in Figure 2 are
the times when the phase should be outside of that range, based on the growth or
damping of the modes. We can see that within the error bars this prediction is
correct.

In order go beyond the qualitative result shown above, we need to verify that the
growth of the n, = 1 mode has the proper cos ¢ dependence. The left hand plot
of Figure 3 shows the growth rate of the n, = 1 mode with the ngyo dependence
divided out plotted versus cos ¢. This fits a linear curve very nicely, showing the
predicted cos ¢ dependence. We can also take the same data and plot it versus
the amplitude of the n, = 2 mode, since this should also be linear when the ¢
dependence is removed. The right hand plot of Figure 3 shows this plot, which is
also linear. The slopes of these lines should depend only on no and wy, but there
appears to be some variation between shots of different drive amplitude that is not
yet understood.
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FIGURE 3. Phasc and Amplitude dependence of mode growth. The figure on the left shows

that /A is proportional to cos . The figure on the right shows that v/ cos @ is proportional to
A.

Energy transfer

The small signal energy density of these modes can be shown to be
2
u = coEf (1 + w—’;)
w

The connection between E, and the voltage that we measure on the rings can be
obtained by recognizing that the voltage is proportional to the charge under the
rings, as in Equation 7. n can be obtained by rccognizing that in this geometry
the radial part of V2 dominates in Poisson’s equation. This makes the clectric
potential proportional to n, independent of the frequency for low frequency modes.
Therefore, E, is proportional to & or nw. Since both modes are integrated over an
integer number of half-wavelengths, the total mode energy can be written as

W2
Energy o« n®w? (1 + —Z)
w

Using this result to plot the energy transfered between the {wo modes in the two
volt case shown above, we get Figure 4. We can see that the energy initially drops
due to the damping of the n, = 2 mode. This levels out as energy gets stored in the
n. = 1 mode, which has much less damping. When the system converts back to the
n. = 2 mode, the energy again decays until the system ends up back in the n. =1
state. The wiggles in the energy curve at about 25 and 40 usec might correspond
to energy being coupled into and out of the n, = 3 mode. The frequency of the
wiggles roughly corresponds to the frequency mismatch between these modes, but
we are unable to measure the n. = 3 mode directly because of the placement of
the measuring rings.
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This simple model does not predict that the modes should end up in the final
state that we see, with the phase near +7 and the n, = 1 mode large and then, =2
mode small. To predict how the phase should behave, we need more information.

A more complete model

We need to include the momentum equation to find how the phase should evolve
(equivalent to finding the nonlinear frequency shifts). We convert the set of equa-
tions (one continuity and one momentum equation for each mode) to second order
equations. From this we find a growth rate of

3\ n
1= (3) g2 con (8)

for the n, = 1 mode, which is 3/4 of the rate given by Eq. 5 in the earlier model.

When we numerically integrate these coupled equations, we find that phase lock-
ing does not occur unless there is damping of the n,=2 mode. Without damping
the modes just convert back and forth indefinitely. With damping, the phase locks
near that given by

]
tan ¢ = g_w (9)
2
where v, is the damping rate of the n,=2 mode. Note that for a small y, this will
be near +Z, depending on the sign of dw.
The amplitudes obey the relationship that

720
—~ = constant (10)

o

187




where the constant depends on i—‘l” and 22,

This final state represents a slow declay as energy is slowly fed into the n,=2
mode from the n.=1 mode. Since the amplitude of the n.=2 mode is small, the
rate of energy loss is small and this state persists for a long time. Of course this
model is also incomplete, as it is an infinite spacc model and ignores finite-length,
image charge, and radial profile effects. It also ignores the damping of the n =1
mode. It does, however, seem to capture the essential physics of what is going on
in the experiment.

GROWTH OF SOLITONS FROM NORMAL MODES

A soliton is a wave in a dispersive medium that is large enough that nonlinear
steepening effects just balance the dispersive spreading, causing it to propagate
unchanged. Solitons occur in many physical situations [5].

The cold fluid equations for a plasma in a cylinder can be manipulated, mak-
ing some assumptions, into the form of the first integral of the Korteweg-deVries
equation [6]. This means that these solitons should have the properties of the well
known solutions of that equation.

The relevant properties of Korteweg-deVries (IKdV) solitons are

1. They travel faster than the linear wave speed in the medium.

2. Two solitons pass through each other basically unaffected, except that their
exit times are delayed relative to what you would expect from their initial
speeds and entry times. If we just observe their entry time and exit time we
would say that their average velocity is less while interacting.

3. The amplitude is linked to a specific speed and width. As the amplitude
increases the speed also increases. As the amplitude increascs the width de-
creases.

4. The soliton has the characteristic shape of sech?(z/A) where A is the width
of the soliton.

Solitons can be created in two ways. One is to put a large potential step on a
confining ring [7,8]. This requires a relatively large voltage (tens to hundreds of
volts.) Another way is to create them from normal modes [6]. Essentially you are
repeatedly hitting the pulses at the right timc with a small voltage. This second
method is the one used to make the solitons in this paper.

The number of solitons created from a given normal mode is equal to n, and in
numerical simulations they have the characteristic sech? shape of KdV solitons [6].
Solitons can only be created in a small amplitude range with this method. For the
soliton to to remain in phasc with the drive, the average speed of the soliton must
be equal to the linear wave speed. This requires a balance between the amplitude of
the soliton (which affects its spced) and the nonlinear slowing during interactions.
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FIGURE 5. Normal Modes and Solitons. The figure on the left shows waveforms on various
wall rings when the n, = 2 mode is in its linear state. The figure on the right shows the waveforms
when solitons are present in the system.

When the soliton is not interacting, its speed is greater than the linear wave speed,
and so the speed can average to the linear wave speed.

Figure 5 shows the waveforms on different sections of the wall both with and
without solitons. Without solitons, shown on the left, all the signals have different
amplitudes, but the same time dependence. With solitons, as shown on the right,
you can see the negative bump of the soliton moving under each ring in sequence.
There are also other oscillations visible in this figure that we think are due to
external resonances in our system. Assuming that the peaks in the figure occur
when the peak of the soliton passes under the center of each ring and knowing
where each ring is located allows us to compute the velocity of the soliton. The
position as a function of time is shown in Figure 6. This shows that the speed is
higher during the short time when the solitons are not interacting either with the
ends or with each other.

If we observe these solitons 20 microseconds later, as shown in Figure 7, we
see that one of the solitons has disappeared. This disappearance of the soliton is
somewhat reminiscent of the mode coupling — the equivalent of the n,=2 mode
bas disappeared and been replaced by the equivalent of the n,=1 mode. When we
observe during the time of disappearance, as shown in figure 8, we find that one of
the solitons decreases in amplitude and slows down until it is overtaken and appears
to be absorbed by the other. The details of how this happens are still unclear. It
is possible that a small amount of the linear type n, = 2 normal mode oscillation
occurs underneath the solitons. If this mode converts to the n, = 1 mode, one side
will be enhanced and the other decreased by that mode. This would cause one side
to be smaller and move more slowly. This hypothesis has not yet been investigated
in detail, however.

The non-interacting velocity of the single soliton is too high for a cold fluid model
of the soliton to explain, but is about what you would expect from a kinetic model
[9]. The non-interacting velocity of the two solitons is somewhat higher than that
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of the one soliton and cannot yet be fully explained.

CONCLUSIONS

The nonlinear effects of mode coupling, phase locking and soliton formation have

all been experimentally observed and most of their properties are as predicted.
Some points have not yet been reconciled, including the amplitude dependence of
mode coupling, the fact that the free soliton velocity is too high when two solitons
exist in the system and the details of how one of the solitons disappears.
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Numerical Investigations of Solitons in a
Long Nonneutral Plasma

S. Neil Rasband and Ross L. Spencer

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

Abstract. For realistic density profiles we have obtained two-dimensional soliton
solutions numerically for a cold-fluid (CF) model and as a BGK wave with finite
temperature. The CF soliton profile agrees well with an earlier analytic approximation
(K. C. Hansen, Master’s Thesis, BYU, 1995), and for small temperatures(<0.1eV) the
profiles for the CF soliton and the BGK soliton agree as well. The effects of temperature
are evident in the propagation velocities and differences in the models are also evident
for large amplitude solitons.

INTRODUCTION

Solitons in nonneutral plasmas have been studied using simulations by Neu and
Morales [1] in slab geometry and by Hansen [2] in cylindrical geometry. Solitons
have also been observed experimentally by Moody and Driscoll [3] and by Hart
[4]. Solitons in nonneutral plasmas offer the potential for careful study of nonlinear
waves and two-dimensional soliton type structures in a system where they live and
interact for a substantial duration of time.

SOLITONS IN THE COLD-FLUID MODEL

The familiar equations for the fluid density n(x,t), velocity v(x,t), and electro-
static potential ¢(x,1) are:

on

E“*’V'(TZV)—O,
& gy 9,3,
dt m me

Vip = —4ngn.

We make the following assumptions:

CP498, Non-Neutral Plasma Physics I, edited by John J. Bollinger, et al.
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0
v, =0, 5= 0, (no ¢ dependence)

v = rwo(r){b + v,2, B = Boz,

where By denotes a constant magnetic field. We then simplify to find

on 0
o T ) =0, 1)
dv, Ov,  q0¢
ERNE @
10, 0p, 0%
—7:—57:(7'5) + 557 —4mgn. (3)

We now transfer focus to the moving frame of the soliton. Assume the soliton is
moving to the right with a velocity u and let { denote the coordinate in the moving
frame along the direction of the magnetic field. Then

(=z—ut, v,=vc+u, n(rzt)=n(r((z1t)), similarlyfor v, and ¢.

Equation (1) becomes

O%(nvc) = 0 = nv¢ = const (in ().

We assume the boundary conditions that v, = 0 when 2z (or () — oo and that also
that n(r,() — no(r) and ¢(r, () — ¢o(r). Thus

n(r,Q)ve(r, () = —une(r). 4)
Equation (2) becomes
Jd .1
= 200+ Lo0r,0) = st + Lao(r) 0

We now solve for v, and n(r, () to find

ve(r,() = ~u(l —2$(r,()F and (6)
n(r, ) = no(r)/(1 = 26(r, )%, (7)
where 9(r,¢) = q(¢(r,¢) — ¢o(r))/mu?. From Poisson’s Equation (3) we then find
e, 0) = 2 [ - 1 - 25, 0)7F] ®)
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Approximate analytic solution to Eq. (8)

Following Hansen [2], assume || < 1 so that 1/4/1 — 2ty =~ 1 44 + 2442, Sub-
stituting in Equation (8) find:

- w2 ry - -
vip=-2a S ©)

Let ¢(r,¢) = R(r)f(¢), where we assume a knowledge of R(r); with boundary
COIldlthIlS R(0) = 1 and R(rwan) = 0. Substitute into Equation (9), multiply
through by rR(r) and then integrate from 0 to ry.y. We obtain the following
equation:

& f

Pl (,82 _ 772"03(0)
dce

u?

3 aw?(0)
-3

1 (10)

u2

where «, 62, and n? are defined below. Let ||g||* = [y**" rg* dr. Then

2 _L Twall i d_R ‘ ”
5= Tarh &R = ty
1 Twall
7]2 - W/(; LAJ?O(T‘)TI‘?,2 dT‘, (12)
1 Twall
= W/O Wi (r)rR® dr. (13)

Equation (10) we recognize as the first integral of the KdV equation and is readily
verified to have the soliton solution:

fl§) = Asechz(%), where (14)
_ u? 2 n*wz(0)
A= aw?(0) (8 u? ), (15)
L1, ),
K= 5B -5 (16)

Numerical solution to Eq. (8)

We assume a tensor product spline approximation for #(r,() = i i(r);(€)
and take a Galerkin approximation to Eq. (8). We assume symmetry about { =0
and 7 = 0 and thus require 8/8((r,0) = 0 and 611)/31‘(0 ¢) = 0. Furthermore
we take ¥(rwan, () = 0 and (r, Cwall) = 0, where (yan is arbitrary but taken large
enough to approximate co. The unperturbed radial density profile is taken to be
of the form
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no(r) = ngo exp [—(}pm.

Due to the nonlinear nature of Eq. (8), the numerical solution is obtained via
Picard iteration. Let superscripts denote the iteration index, then symbolically,

PU(r, Q) = (V™)

where (V?)~! represents the inverse of the matrix operator obtained in the Galerkin
procedure to represent the Laplacian and f(1)(™) represents the right hand side of
Eq. (8). An efficient algorithm is devised that converges rapidly without underre-
laxation: compute ¥("*1)(r, (), then adjust u according to

un ) — u(n)\//,lz)(n),&(n-l-l) da//(@[,(n)y da,

The amplitude (0, 0) is fixed, 0 < ¢(0,0) < 0.5, and thus after finding w1 the
coefficients are adjusted to satisfy this constraint which then give us a new ™),
Then cycle again until convergence is achieved.

As an example we choose Ty = 4.0cm and (wan = 30.0cm. For the density
profile we choose r, = 2.0cm, g = 4.5, and ngy = 4.0 X 10%cm ~3. We choose
$(0,0) = 0.4 and then find the numerical solution to Eq. (8). Figure 1 shows the
two-dimensional soliton function ¥(r, () for ¢ > 0.

soliton equilibrim function ¥(r,¢)

N
'(cm) 3

FIGURE 1. Potential soliton for ¢ > 0

Figure 2 compares the numerical solution to Eq. (8) to the approximate analytic
solution as given in Eqgs. (14)-(16) for r = 0.

Using Egs. (11)-(13) with the function R(r) replaced by (7, ¢) and then choosing
an average over (, we estimate o = 0.52, 8% = 0.41, and 7? = 0.68 for the soliton
computed above. With these values Eq. (15) gives u/(rpw(0)) = 0.74 whereas the
numerical solution has u/(rpwe(0)) = 0.80.
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for (>0

BGK WAVE SOLITON

To find the appropriate nonlinear BGK wave we need the distribution function

f(r,¢,v) where

n(r, () = /_O:o f(r,¢,v)dv.

We obtain this distribution function by assuming that far away from the soliton,
{ — oo, the distribution function should be a Boltzmann distribution centered

about —u, f ~ exp[—i%:;’iﬁ]7 where vy is the thermal velocity given by +/kT/m
T

and ve(v,() is defined below. In other words, we inject a Boltzmann distribution
toward the soliton from the right. This distribution function we get everywhere by
noting that the distribution function is preserved along particle orbits and using
conservation of energy, 3mv?® 4 gé(r,() = 3mv2, + q¢o(r). Thus we find

Fr,6,0) o | g 17 4 2075, o]%)?] ,

where the & must be decided according to whether the particle at 0o has positive
or negative velocity. This distribution function is normalized by demanding the
n(r,¢) = no(r) as { — oco. The net result of this procedure is the following density
distribution which then goes into Poisson’s equation. The overbars on the velocities
denotes that they have been scaled by u.

- E%(Tr_) % [2(1 + exf( 5T1\/§)) — erf (1;—?0[(572) et (L;L\;g_))] )

n(r;{)
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x{/oooexp[ 5 (1—[1} + 2¢(r, )2 )2] do
4 [ exp [T (L= + 200 )]
+/ exp[ (1+[8* +26(r, O)?) ] da} (17)

In this expression we use To(r) = 1/2¢(r,0) and o(r \/2|1,b(r 0) — o(r, )|
The right-hand side of Eq. (8) becomes then

2e0) (1 n(r, ) ro(r)

With the above right-hand side we solve Eq. (8) for the BGK solution. Under-
relaxation is now required for convergence. As an example we choose ¥(0,0) = 0.1
and T = 1.0eV. Figure 3 compares this soliton with the analytic approximation.
The corresponding soliton velocities are u/(rpwe(0)) = 0.67 for the analytic approx-
imation, 0.68 for the CF numerical solution, and 0.80 for the BGK soliton.

soliton equilibrim function ¥ at r=0
0.12 —

0.10}

0.00 —t i~z . s .
60 80 100

{{em)

FIGURE 3. Comparison of a BGK numerical soliton(solid) and the analytic approximation

(dashed) for ¢ > 0
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The m = 1 diocotron instability in single
species plasmas

J. M. Finn*!, D. del-Castillo-Negrete* and D. C. Barnes'

* Theoretical Division and t Applied Theoretical and Computational Physics Division
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Abstract.

According to conventional theory based on the drift-Poisson equations, the m = 1
diocotron mode is stable, even for hollow density profiles. However, experiments[C. F.
Driscoll, Phys. Rev. Lett. 64, 645 (1990)] show instability for this mode. These
results have remained unexplained since 1990. We have found two effects, related to
compression parallel to the magnetic field, which lead to instability with growth rates
and other properties in good agreement with the experiments. The first is due to
curvature of the sheaths at the ends of the trap. The second is the free boundary effect
due to the linearized perturbation of the plasma length. These effects are described
in terms of the modified drift-Poisson model, which states the conservation of the line
integrated density. The modified drift-Poisson equations derived are analogous to the
shallow water equations of geophysical fluid dynamics (GFD), with the line integrated
density corresponding to the potential vorticity. This is explained in more detail in [del-
Castillo-Negrete et al., this volume]. More recent experimental results[A. A. Kabantsev
and C. F. Driscoll, this volume] show agreement over a wider range of parameters than
the original experiments. We study the m = 2 mode and show that curvature and free
boundary effects can increase the growth rate, but it is still small compared to that
of the m = 1 mode for realistic parameters, and the critical hollowness for stability is
much greater. Results are also shown for m = 1 modes in the analogous GFD system.
It is shown that topography variation in cylindrical geometry and free surface effects
both lead to instability with properties similar to those in the plasma models.

According to the classical theory of diocotron modes in nonneutral plasmas [1,2],
the m = 1 mode (where m is the azimuthal mode number, and the magnetic
field is in the Z direction) is stable even in the presence of a hollow density profile.
However, experiments with such profiles in a Penning-Malmberg trap [3] have shown
an instability [4], with an exponential growth rate a substantial fraction of the Ex B
rotation frequency. There have been several theoretical attempts [5-8] to explain
this discrepancy, but the results showed either zero exponential growth rate or
growth rate orders of magnitude less than found in the experiment.

1) e-mail: finn@lanl.gov
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The theory of low frequency behavior, such as that of diocotron modes, is based
on the drift-Poisson model. This system consists of the continuity equation with
velocity equal to the E x B drift u;, = & x V¢/By (the magnetic field B = Byz is
constant) and ¢ obtained from the Poisson equation, i.e.

Dn
Dt
where D/Dt = 8/0t +u, - V, —e is the electron charge.

Our goals here are (i) to review the modified drift-Poisson model, results of
Ref. [9] on the m = 1 diocotron instability, and the geophysical fluid dynamics
(GFD) analogy, (ii) to outline an alternate derivation of the free boundary effect in
Penning-Malmberg traps, (iii) to show new results with the modified drift-Poisson

model for m = 2 modes, (iv) to investigate the destabilizing effects of topography
and free surface on an analogous m = 1 mode in GFD.

=0, Viq& = 4dwen , (1)

THE MODIFIED DRIFT-POISSON MODEL

The drift-Poisson model is based on an assumption of strictly two-dimensional
behavior of the plasma in the trap. However, equilibrium computations [9-12}
show that in general there is curvature in the electrostatic sheaths at the ends of
a plasma. Based on this observation, we have introduced a new model [9] in order
to explain the discrepancy between theory and experiment. The equations of this
model, which we call the modified drift-Poisson model, are derived by integrating
the three dimensional continuity equation including parallel compression d(nu,)/0z
in z over —L(r,0,t) < z < L(r,0,t). This treatment is consistent with the fact
that the plasma is independent of z in the region —L < z < L (neglecting the
width of the sheaths at the ends, which is of order the Debye length). This leads
to Dn/Dt+n[u,(L) — u,(—L)] /L = 0. Using the kinematic relations u,(r,6, L) =
(D/Dt) L, u,(r,0,—L) = —(D/Dt) L we find

D
= (L) =0. @
The quantity nL is the line integrated density, and Eq. (2) is the equation for
conservation of charge in plasma columns aligned with B. In this approximation,
all quantities are independent of z for —L < 2z < L (except u, ~ z). Therefore the
Poisson equation takes the same form as in Eq. (1), and the velocity u; = 2xV¢/By
is also unchanged. The plasma length is of the form L(r,,t) = Lo(r)+A[¢(r, 6, 1) —

¢o(r)], where ¢o(r) is the equilibrium potential, and A allows for the possibility of
a moving boundary; A is in general a linear functional obtained by matching at

z =L,z = —L to the vacuum region |z| > L(r,0,t). Equation (2) can be written
in dimensionless variables in the form
D Vie| Lydp D
[ 5T —A] 0, (3)
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where D/Dt is as before the E x B convective derivative. We assume a conducting
wall at r =r, = 1.

There is an analogy [9,14] between the modified drift-Poisson equations and the
shallow water equations [13] of GFD, in which the line integrated density nL cor-
responds to the potential vorticity, and the first term (the curvature term) in the
brackets in Eq. (3) is the analog of either topography variation or of latitude varia-
tion. Specifically, for a cylindrical tank with a sloping bottom at z = —Hg[1—A(r)],
the equation analogous to Eq. (2) states the conservation of potential vorticity g in
a frame rotating at constant angular frequency §):

Here, h(r,0,t) = n(r, 8, t)— Ho[1— A(r)] includes the topography variation as well as
the motion of the free surface at z = 5 and D/Dt is the convective derivative with
the geostrophic flow u; = % x V4. The streamfunction is given by ¥ = gn/(20),
g is the gravitational acceleration, and ( is the vorticity V3 ¢ in the rotating frame.
Expanding for Ro << 1,A(r) << 1 (Ro is the Rossby number) and ignoring the
constant 2}y we obtain the approximation

204 (r) O
% =0 (5)

2 [viy - K]

where the term proportional to k% = 43 /gH, is due to the free surface, and k' is
called the Rossby deformation radius. Expanding near some positive radius, A(r)
contributes a term linear in 7. This is called the 8-plane approximation. Expanding
near r = ( gives the y-plane approximation [13], in which the leading order variation
of A(r) is proportional to r2. We will explore this analogy further in the context
of an m = 1 fluid instability in the v-plane approximation. As discussed further
in Ref. [14], this equation for kr = 0 is analogous to the modified drift-Poisson
equations, specifically to Eq. (3) with A = 0, although there is no analogy in the
latter system to the terms proportional to k%. The terms proportional to A’(r) and
L'(r) in Eqgs. (5) and (3) respectively are both related to 2 compression, but in the
former the 3D compression is zero, du,/8z = —V, -u;. In the latter, V-u, =0
and V- u = du,/0z.

MODEL

Equilibrium computations for Penning-Malmberg traps show that it is appropri-
ate to parameterize the equilibrium length Lo(r) of the plasma as

Lo(r) = Lo(0) (1 - x1%) (6)

with the curvature parameter  typically positive [9]. We consider density profiles
of the form [15]
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no(r) = no(0) [1 = (r/ry)?]” [L+ (u+2) (/)] )

for 0 < r < 7, and zero otherwise, where 7, the plasma radius. The density profile
is hollow if s > 0; in this case the E x B rotation profile (r) is also hollow.

LINEARIZATION AND FREE BOUNDARY
PERTURBATION

Linearizing Eq. (3), we obtain

(- m0() Vi + MG = T G- mOU) AT, ®)

where we have assumed the normal mode dependence ¢ ~ e™~®* and w is the

complex frequency. This equation reduces to the conventional Rayleigh equation if
the terms on the right due to variation of L are zero.

The free surface linear perturbation A[4] is computed by matching to the vacuum
region. In Ref. [9] we showed that by requiring continuity of the normal as well as

tangential components of the electric field E at z = Lo(r) + A[@] one obtains the
following equation for A:

no(r)A = [1+ Li(r)?] (8.9) 9)

where the subscript e denotes the external region just to the right of 2 = Lg(r).

In order to show the equivalence of an alternate matching approach [16] with
ours, we rederive Eq. (9). Following this alternate approach, we first write the
equilibrium density in the limit of zero Debye length as n(r, z) = ng(r)©(Le(r) — 2),
where © is a step function. Then, 7 has a singular component due to axial motion
s = —Ad,n(r, z) given by

7is = Ang(r)6(z — Lo(r)) . (10)

Thus, the perturbed density 7 has a surface charge contribution even though the
full nonlinear density is bounded, consistent with continuity of the full nonlinear

electric field E. Defining ¥ = [z — Ly(r)] /4/1 + Lj(r)?, such that V¥ is the unit
outward normal to the curved equilibrium plasma boundary at ¥ = 0, we write 7,
in terms of the distribution & of surface charge at z = Ly(r) as

Ang(r) , (11)
J1+ L)

Relating the jump in the normal derivative [V\I' . V&]z

fis = 56(0) , 6=

—Lo(r) to ¢ and requiring

continuity of the tangential derivative of q~5, we obtain
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o

) eerr = T

(12)

z=Lo(r) =

Using 8,4 = 0 in the plasma z < Lo(r), we recover Eq. (9) from Egs. (11) and (12),
showing that this alternate formulation is identical to that discussed in Ref. [9].

To express (6zg5)e at 2 = Ly(r) in terms of ¢ at z = Ly(r) involves solving
Laplace’s equation in the vacuum region Ly(r) < z < Lo(0) + b, where b is the
length of the end-cap, and with Neumann boundary conditions at z = Ly(0) + b,
a reasonable approximation to open boundary conditions. In general, this can
be done in terms of a Green’s function. However, for b << r, = 1, assuming
Ly(0) — Lo () = O(b), there is a differential approximation [9}:

(6.9), = bf(r) V14, (13)

where f(r) = 14 [Lo(0) — Lo(r)]/b. Substituting Egs. (9),(13) into Eq. (8), using
Eq. (6), and neglecting terms of order x?, we find f(r) = 1 + xr%/n and

m 28T

(140 + s = mU)VE G+ [ - m|$=0, (14)

1— kr?

where 7 = b/ Ly(0). Note that we have assumed 7 ~ &.
For A = 0 in Eq. (8), i.e. ignoring free surface effects, and using Eq. (6), we find

- m 2kr ~
2 7
(w—mQ)Vi¢>+—[n —(———)no]¢=0. 15
N 1—kr? (15)
2 «10° Scaling near the onset of instability  (a) _ Stability diagram [}
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FIGURE 1. (a) Scaled growth rate v/u? as function of &/, for u = 0.05 (top), 0.10, 0.15, 0.20,
and 0.25 (bottom) from Eq. (15). The overlap of the curves shows that for (k,u) — O, v(k, 1)
converges to the self-similar form pT'(x/u) of Eq. (16). (b) Stability diagram pu, k. The solid
curve is the stability boundary computed numerically, and satisfies £/ < 1.55 for g, k << 1, with
little variation for &, ~ 1. The dashed line is the modified Rayleigh criterion [no(r)Lo(r)]’ < 0
stability boundary, which for r, = 0.59 gives x/u < 2.87.
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Note that along with 7 = 0 the term 72 in the factor multipling V2 ¢ in Eq. (14)
is dropped, because it is included there under the assumption n ~ . The two
significant parameters in Eq. (15) are the hollowness p of Eq. (7) and .

RESULTS WITH CURVATURE

For k > 0 and 7 = 0, i.e. using Eqgs. (15) and (7) with g > 0 (hollow), a mode
with a positive growth rate ~ is found. For fixed p and 5 — 0, 7 scales as k%3
for k small, and w, — gz, the maximum of §(r). The fractional power and
threshold k = 0 are associated with a boundary layer near €,,,,. We have found
that w, decreases slowly from Q,,.; as k is increased, giving two resonant radii
(where Q(r) = w,). The perturbation decays rapidly outside the radius where Q(r)
is maximum, showing the self-shielding property observed in the experiments [4].
For k < 0 the mode is stable (7 = 0) with a real frequency w, that increases above
Qumar as |k| increases, i.e. the mode becomes nonresonant. More details are given
in Ref. [9].

For u,x — 0, there are scaling properties due to the localization of the mode
inside the radius rq where Q(r) is maximum. For u,x small but x/p ~ 1, and
using 7 ~ rq ~ p/? we find the scaling [9]

v/t =T(s/p) . (16)

The scaled growth rate y/u? as function of x/p from Eq. (15) is shown in Fig. 1-
(a) for five values of . The results are in agreement with the scaling of Eq. (16).
From the scaling 7y ~ k%% as k — 0 and these results we conclude v ~ x2/3u*/* for
k << p. From Fig. 1-(a) we observe further that the marginal stability point to
the right satisfies k/p & 1.55. This marginal stability curve is shown in Fig. 1-(b).
Note that the marginal stability curve is nearly linear even for &, p of order unity.

The linearized equation (15) for A = 0 has a modified Rayleigh criterion. The
usual derivation [2] is easily generalized to give a sufficient condition for stability:
the equilibrium is stable if the line integrated density no(r)Lo(r) is monotonic. This
condition is satisfied for  sufficiently large since the length Lo(r) [c.f. Eq. (6)] is
a decreasing function or r. The sufficient condition from the modified Rayleigh
criterion as well as the actual marginal stability curve x/p = 1.55 are shown in
Fig. 1-(b).

Equilibrium computations show that k increases as the length decreases, and
that values k ~ 1 can be obtained for short plasmas [9]. Thus, the linear results

shown on Figs. 1 predict stability for short plasmas. This stabilization has been
observed in experiments {17].
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RESULTS WITH CURVATURE AND FREE
BOUNDARY

In Figure 2-(a) we show the growth rate + obtained from Eq. (14) as a function
of n for u = 3 and eight equally spaced values of x between 0 and 0.35. For these
values of 7 the differential approximation of Eq. (13) used in Eq. (14) is adequate.
These values of v/w, are in reasonable agreement with experiments {4]. We find
that the behavior as a function of 7 is similar to the behavior as a function of .
In particular, ¥ ~ n?/® for k = 0,5 > 0, and the mode is stable and nonresonant
(with w; > Qpez) for £k = 0,7 < 0.

It is easily seen that the linearized equation in the presence of curvature and
free boundary effects in the differential approximation, Eq. (14), satisfies the same
modified Rayleigh criterion as for n = 0, namely (ngLg)’ < 0. However, the observed
stabilization for large 1 and £ = 0 [9] is not predicted by the modified Rayleigh
criterion. Note also that the modified Rayleigh criterion applies to all modes with
m # 0. We conclude that the usual diocotron modes with |m| > 1 can in principle

be stabilized by sufficiently large curvature. We return to this point in the next
section.

RESULTS FOR M =2 MODES

We have obtained results for m = 2 modes in the presence of curvature and free
boundary, i.e. x and 7. First, we have studied the case n = 0, with r, = 0.50 and
0 <D <0.06. (D=1/pis the hollowness parameter written as A in Ref. [15].)
For x between 0 and 0.2, we found that the growth rate relative to that obtained

(a)

00 05 10 15 20 25 30

n a0’

D xll).2

FIGURE 2. (a) Dependence of the growth rate v on 7 according to Eq. (14), for eight equally
spaced values of k between 0 and 0.35 and u = 3. (b) Growth rate 4 for the m = 2 mode, relative
to the m = 1 diocotron frequency wy = Q(r = r,). Results are plotted for r,, = 0.50,x = 0 as
a function of the hollowness parameter D = 1/u of Ref. [15) for five equally spaced values of the
free boundary parameter n between 0 and 0.1.
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in Ref. [15] changes by less than 0.1%, the real frequency changes by less than
1%, and the marginal stability point D = 0.05 does not change significantly. In
Fig. 2-(b) we show the growth rate -, scaled to the m = 1 stable diocotron mode
frequency wi = SUr = ry,), as in Ref. [15] for k = 0, 0 < 7 < 0.1 and D in
the above range. These results show that in this range of n the growth rate of
m = 2 modes increases by about a factor of two and the relative change in the real
frequency changes by a factor up to 10%, i.e. dw,/w, ~ 7. The absolute changes
v and éw, are comparable. However, the marginal stability value of D increases
by only a small amount. As described in Ref. [15], these modes are destabilized
by a small population of resonant particles. Because of this local resonant nature
their growth rates are very small (y/w, ~ a few times 107 [15].) (However, it
should be noted that a m = 2 mode of the drift-Poisson equations with a much
larger growth rate has been recently found [18].) The results with £ > 0, or the
results with > 0 of Fig. 2-(b), show that the conclusion of very small growth
rates still holds. Moreover, these modes for = k = 0 have a very large critical p
(small D) for instability, which does not change substantially for reasonable values
of k and 7. Furthermore, the possible stabilization for large  is irrelevant for the
m = 2 modes; they are unstable only for a large degree of hollowness D < 0.05 [15]
(consistent with Fig. 2-(b)), i.e. s > 20, so that an unrealistically large curvature
& ~ p would be required for the modified Rayleigh criterion to be satisfied. Such
values of k are not observed in equilibria [9]. Indeed, the representation (6) is
invalid for £ > 1/r2. It is anticipated that the m > 2 modes behave similarly to
those for m = 2.

In conclusion, the m = 1 mode in the presence of curvature or free boundary
has a much larger growth rate than the resonant m = 2 (and higher) modes.
Furthermore, end effects, which can be further destabilizing, do not change this
conclusion qualitatively. (However, the faster growing m = 2 mode of [18] can
have a growth rate which is comparable to that of the m = 1 mode driven by end
effects.) Also, the m = 1 mode has a small critical hollowness p. for stabilization,
unlike the resonant m = 2 and higher modes, and . goes to zero as k goes to zero.

M =1 RESULTS IN ANALOGOUS FLUIDS

Based on the above results, showing instability for m = 1 modes in Penning-
Malmberg traps with hollow density profiles, and the analogy with geophysical fluid
dynamics, we have investigated the m = 1 stability properties of rotating fluids with
topography variation, including free surface effects. As a concrete example, consider
a rotating cylindrical tank with topography, i.e. a sloping bottom. Linearizing

Eq. 5, we obtain
(—mQr)) (V39— i) + ? [Go(r) = rQUr )R + wr] § =0. (17)

Here, (o(r) is the equilibrium vorticity and Q(r) = r~'dio(r)/dr is the equilib-
rium rotation velocity, both in the frame rotating at €. We have taken the
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relative topography A(r) = er?/r2, where ¢ << 1 and 7, is the radius of the
tank, and defined v = 4eQ/r2. The relative topography A(r) includes the equi-
librium parabolic deformation of the surface due to the rigid rotation Q, i.e.
A(r) = A(r) —r?Q3/(2gHo). The free surface terms proportional to k% in Eq. (17)
have no analog in the Penning trap.

If Fig. 3-(a) we show the growth rate v as a function of v for three values
of kr. Note that instability occurs for v < 0. There is a zero threshold in v
for kg = 0, with v ~ |v|/3 for small |v|, and stabilization is observed for large
|, similar to the plasma case. Again, there is a modified Rayleigh criterion for
Eq. (17): a sufficient condition for stability is that (o(r) — k30 (r) + 2QA(r) must
be decreasing, or (43(r) — rQ(r)k% + vr must be negative. In Fig. 3—(b) we show
7 as a function of kg for six values of v. The growth rate increases with kp and
[v]. For v = 0, the curve is cut off for small kz because of the resolution required.
As in the plasma case, the real frequency approaches Q,,,, from below as |v} or kg
decreases, and for v > 0 the mode is stable with a real frequency w, > Qmq.. That
is, for parameters for which there is instability there are two resonant radii, where
wy = Q(r), whereas when there is stability the mode is nonresonant. The mode
structure has the self-shielding property of the plasma case: ¢ goes to zero rapidly
just outside §(r) = Qg Since the total height is h = Hy[1 — A(r)] for zero free
boundary perturbation, we see that instability occurs when the total height is an
increasing function of r, A'(r) = —HyA'(r). (Note that this suggests instability
even for A’ = 0, due to the equilibrium parabolic deformation, if the vorticity in
the rotating frame is hollow.) The fluid and plasma have opposite stability criteria,
because the potential vorticity in the lab frame is, respectively, (/h and nL. That
is, advection into a region of increasing height (length) increases the vorticity in
the fluid case but decreases the vorticity (i.e. n) in the plasma case.

(@)

-
4 6
‘
-~ x10°
g0 05 10 15 20 25 30
\\ ?

30 -2‘.5 -iO -f.S -10 -6.5 0.0 2 3 4

v kR 110-l

=]
w

FIGURE 3. (a) Growth rate for the m = 1 mode from Eq. 17 as a function of v for three equally
spaced values of kg between 0 and 1.0. (b) Growth rate for the m = 1 mode from Eq. 17 as a
function of kg for six equally spaced values of v between 0 and —~0.1.




COMPARISON WITH EXPERIMENTS

As discussed, the theoretical results for the m = 1 diocotron mode are in good
agreement with the earlier experiments [4]. Recent experiments [19] over a wider
range of parameters show further agreement. Specifically, the agreement between
theory and experiment includes: (i) the scaling v ~ k%3 for small «; (ii) the sta-
bilization for short plasmas (large k); (iii) the decrease of the real frequency for
increasing positive k; (iv) stability for kK < 0 with real frequency that increases
above Qg with ||; (v) the self-shielding property. There appears to be a discrep-
ancy in -y of about a factor of two, but it is possible that this may be resolved by
a Green’s function treatment not restricted to b/r,, << 1. (The conditions for the
validity of the differential approximation of Eq. (13) are only qualitatively satisfied
in the experiments.) Also, Eqgs. (14),(15) have the property that the perturbed
density 7 = V2 ¢ should be zero where [ng(r)Lo(r)]' is zero. In the experiments [4],
[19], |71| does indeed have a minimum there, but its value appears to be positive.
This possible discrepancy may also disappear in a Green’s function treatment.
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End Shape Effects on the m,= 1 Diocotron
Instability in Hollow Electron Columns

A.A.Kabantsev and C.F.Driscoll

Physics Department, University of California at San Diego
La Jolla, California 92093

Abstract. Magnetically confined hollow columns of electrons exhibit a robust exponential mgy =1

diocotron instability, whereas standard 2-D fluid theory predicts at most algebraic growth. This
discrepancy suggests that experimental subtleties such as finite axial length of the plasma column
must be considered. Here, we present a systematic analysis of our experiments to determine the
detailed influence of the plasma end curvature on the observed diocotron instability. Observed
dependencies of unstable mode frequency, growth rate and spatial eigenfunction as a function of
the plasma end curvature are in quantitative (factor-of-two) agrecment with recent quasi-2D
extension of the fluid theory.

INTRODUCTION

Ancient experiments by Driscoll (1) established that hollow electron columns
exhibit a robust exponential mg = 1 diocotron instability, whereas standard 2D fluid
theory predicts at most algebraic growth (2). There have been several theoretical
attempts to explain this instability. In Refs. (3, 4) it was shown that the effects of finite
gyroradius lead to an exponentially growing instability, but with negligible growth rate
for values characteristic of the experiments. Smith (5) has shown that shifts in the
azimuthal rotation frequency due to finite plasma length can lead to exponential growth
rates comparable to the experiments; but the shifts were ad hoc, making quantitative
comparison with experiment difficult. Most recently, Finn et al. (6) have included the
effect of plasma end curvature in this quasi-two dimensional analysis, making direct
test of the theory possible. The instability mechanism involves compression of the
plasma parallel to the magnetic field, with conservation of the line-integrated density.

Here, we present detailed experimental measurements of how the radial variation of
the plasma length, i.e. curvature of the ends, affects the mg= 1 diocotron instability of
partially hollow electron columns. Direct tests of the theory are provided by changes of
the plasma end curvature due to changes of the trap length L, (normalized to the wall

radius R,,) or of the plasma self-potential ¢, (relative to the confining potential V).
The measured dependencies of the unstable mode frequency, growth rate and spatial

CP498, Non-Neutral Plasma Physics I11, edited by John J. Bollinger, et al.
© 1999 American Institute of Physics 1-56396-913-0/99/$15.00
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eigenfunction as a function of the plasma end curvature are in quantitative (factor-of-
two) agreement with this quasi-2D extension of the fluid theory.

EXPERIMENT

Figure 1 shows the experimental device with the imaging diagnostic. Electrons from
a spiral tungsten filament are trapped in a series of grounded conducting cylinders
(radius R,, = 3.5 cm) enclosed in a room-temperature vacuum chamber (P < 109 torr).
The electrons are contained axially by negative voltage V.. (up to —300 V) on the end
cylinders, and confined radially by a uniform axial magnetic field B, = 4 kG, resulting
in a confinement time of about 100 sec. The trapped electron column typically has
density n < 107 cm-3, radius Rp = 2 c¢m, and confinement length 3 < L, < 90 cm. The

electrons have average kinetic energy T = 1 eV and are effectively collisionless. The
kinetic energy perpendicular to B, is bound up in cyclotron orbits, which are fast

(f. = 10 GHz) and small enough (r. = 5 pum) to be ignorable. The axial bounce
frequency of an electron f, = W2L, is large compared to the ExB drift rotation

frequency fg,g, so the (r,0) flow of the electrons can be described by the 2D drift-
Poisson equations.

b L, b phosphor
screen

CCD
camera

o Ot cs o v

Ve L v, U

FIGURE 1. The cylindrical experimental apparatus with phosphor screen/CCD camera diagnostic.

The confined electrons are sensed and manipulated by antennas in the wall, and, at
any desired time, the z-integrated electron density Q(r,6 1) is accurately measured
(destructively) by dumping the column axially onto a phosphor screen biased to 15 kV,
from which the luminescence is imaged by a low noise 512x512 pixel x16 bit CCD
camera. The shot-to-shot variations in the initial images are small, so the temporal
dependence can be inferred from a sequence of shots with essentially identical initial
conditions and different hold times, .

For axisymmetric plasmas we used an (r, z) solution to Poisson’s equation to
determine the radial dependence of the equilibrium plasma length Ly(r) and z-averaged
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density ng(r) = Q(r) / Ly(r). The z-dependence of plasma density, n(r, z), and self-
consistent space-charge potential, ¢(r, z), are routinely reconstructed from the
measured z-integrated density Q(r), the measured electron temperature T(r), and the
known boundary conditions at the walls, assuming only local thermal equilibrium
along field lines. Following Ref. (6), we determine here the plasma end as
equipotential surface, where ¢(r, z) — ¢(r, 0) = T/e. From the plasma end shape we find
the plasma end curvature k(r) = — Ly"(r) / 2Ly(0), where Ly"(r) = (32/0r2) Ly(r). For
enough high confining potential, V. >> ¢, the equilibrium plasma length Ly(r) has
Ly”(r) <0 (and thus x(r) > 0) for monotonic as well as hollow density profiles, except
for cases with very broad density profiles with r, — R,,, where r, is defined by the
maximum of Q(r). In practice, we use parabolic approximation of Ly(r) for r < r,,, and
determine the plasma end curvature as

K = {Ly(0) — Lo(r,)} I Ly(0)(r, /R,

For the experiments described here, we apply a small mg=1 “seed” perturbation to

a stable, quiescent, monotonic and azimuthally symmetric density profile, then make
the density profile partially hollow (by ejection from the center), and then observe and
measure the time evolution of the resulting instability.

The initial stages of this evolution can be analyzed from the perspective of linear
modes. We consider the mg= 1 component of the data, given by

2r
on(r,t)= Id& n(r,0,t)e” .
0

From the sequence experimental images, we observe that two frequency components
characterize the data rather completely, and that these frequencies do not vary with
radius. Thus, the mg = 1 data component can be computationally fitted by a sum of
these two modes (g = 1, 2), as

on(r,p) = 2y on (r) el2 e,

The least-squares fit determines the mode frequencies fq, the growth rates % and the
radial eigenfunction &q(r). As arule, we fit to data at sixty radii and forty times.
Figure 2 shows the amplitude and phase of the radial eigenfunction for a typical

unstable mode. The eigenfunction is approximately proportional to dQ/dr inside the
radius r,, but, in contrast to the stable mode, the eigenfunction for r > r, is unrelated to

dQ/dr. This outer part of the eigenfunction is close to zero for small plasma end
curvature, but increases with curvature. The calculated electric field arising from the
mode shows the self-shielding property, going to zero rapidly just outside the radius rg

defined by the maximum of fg,g(r).



FIGURE 2. Amplitude and phase of the measured unstable eigenfunction. Also shown are
the initial hollow z-integrated density profile and the initial ExB drift rotation fg,g(r).

Figures 3 and 4 show the normalized frequency and growth rate of the unstable
mode as a function of k. This data all has hollowness ny(0)/n,,,, = 0.77. The curvature

x was varied by varying the confinement potential ¢ < V. < 300 V, and by changing
the electrode lengths (b, L.). Here, b is the length of the end (confining) cylinders, and
L. is the confinement length. The mode frequency f slightly increases as k decreases,
and in the limit K — 0 approaches the maximum value f,,,,, = fr.p(E), i.. f< frnax.

O- b=6.8cm; Lc=

34.6 cm
- b=138cem;L_=208cm 7

Figure 3. Measured frequency of the instability as a function of the plasma end curvature x; for
ny(0) /n,,,.=0.77.
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FIGURE 4. Measured growth rate of the instability as function of the plasma end curvature x; for
ny(0) /n,,, = 0.77.

The unstable mode growth rate ¥ increases with xas k23 for k< 0.5, and the all

curves have the same coefficient = 0.33 + 0.01 in the least-square fit
y =a+ fx?3,

Also we observe that there is some offset in growth rate at K= 0, which depends on
confinement geometry. We attribute this to some contribution to the instability from a
linear perturbation of the plasma length (6). For x 2 1 the growth rate saturates and
then decreases as x increases. This behavior is similar to the behavior of the growth
rate versus the parameter A in Ref. (5), or versus the parameter x'in Ref. (6).

The equilibrium becomes stable in the experiments for 2 k.,;;, where k.,;; depends
on ny(0)/n,,,,, and in the experiments with negative x. Unfortunately, the first case is
achievable only for very short (L. /R,, < 2) electron columns, making accurate
measurements of the growth rate near the transition point difficult due to a lack of
manipulating electrodes. The second case (negative curvature) is achievable for
extremely long confinement length (L. /R,, = 20), extremely high confining voltage
(V. /¢y = 10), and very broad hollow density profile (r, 2 0.5R,,). In particular, we
observe the mg= 1 mode to be stable on a hollow column with L. =88 cm, V,./¢) = 10,
and r,, = 0.5R,,, with a calculated x(0) = -0.024.

CONCLUSIONS

We have studied experimentally the dependence of the mg = 1 unstable mode
eigenvalues (growth rate and real frequency) on three dimensionless plasma
parameters: confinement length, L. /R,,, the self-potential, ¢, /V,, and the hollowness,
ny(0)/n,,,x describing the equilibrium of the electron column.
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8%



We have shown that there is a strong influence of the curvature of the ends of the
electron column. This is not only modifies the relation between the finite axial length
and the rotation frequency, but it also has important consequences with regard to the
stability of the diocotron modes.

We have established the existence of a clear functional dependence between the
plasma end curvature and the growth rate of the unstable mode, and we have also
shown that there is some influence of axial confinement geometry on the instability.
All of our experimental results, including the dependencies of unstable mode growth
rate, frequency and spatial eigenfunction, are found to be in factor-of-two agreement
over a wide range of plasma end curvature x with predictions based on the model of
quasi-2D finite length correction of the eigenvalue equation (6). Specifically, in both
the experiment and the model, the unstable mode has following features:

v for small k the growth rate scales as yoc k2/3;

v' for k2 1 the growth rate saturates and then decreases as x increases until
the mode is stabilized for curvatures kK > K.,;(7,,2, M0(0)) ;

v for k> 0 the frequency f decreases from f,,,,, = fr.g(rE) as Kincreases ;

v for k< 0 the mode is stable with frequency f > f,4x 5

v' the unstable mode has a “self-shielded” eigenfunction, i.e. the perturbed
potential and density vanish outside the plasma radius.

Despite these intriguing similarities, there are still a factor-of-two discrepancy in the
growth rate and some discrepancy in the eigenfunction between the experiments and
the calculation of Ref. (6). From the experiments we have y= a+ fx2/3 with = 0.33
(for ng(0)/n,y,,, = 0.77), which is nearly independent from (b, L), while from the model
of Ref. (6) we can estimate it as = 0.16. In our experiments the eigenfunction of the
unstable mode has a deep minimum, but it does not vanish totally inside the plasma
radius; while in the model the density eigenfunction has sharp zero at that radius where
Q" = (3/9n[Ly(r)-ng(r)] = 0. The last problem may be resolved by considering a range
of electron kinetic energies: different kinetic energies would give different effective
plasma lengths L, and therefore different radii where (Lgng) = 0, so the eigenfunction
would be expected to have a smeared minimum rather than a true zero.
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Measurement of Plasma Mode Damping in Pure
Electron Plasmas

J. R. Danielson and C. E. Driscoll

Physics Department, University of California at San Diego, La Jolla, CA 92093

Abstract. Measurements of mg=0 Trivelpiece-Gould modes in a finite length pure
electron plasma show damping rates y/w ~ 10° to 10? with no correspondence to
standard linear theory. The modes are excited by a short resonant burst; and the wave
potential versus time is detected at the other end of the plasma. Measured mode
frequencies w agree with calculations of finite k: Trivelpiece-Gould modes using the
experimental density profile and plasma temperature. For low amplitude excitation,
the measured wave potential damps exponentially in time (at rate ¥) independent of
amplitude. However, measured damping rates show no correspondence with linear
Landau damping, nor with dissipation due to compressional viscosity, nor with recent
estimates of "bounce-harmonic"” damping.

INTRODUCTION

Theories of non-neutral plasma modes have been notoriously inaccurate in
predicting the imaginary part of the mode frequency (i.e. damping or growth). This
may be because the trapped particle velocity distribution is easily perturbed by the
wave, or because realistic boundary conditions for finite length plasmas are difficult
to describe analytically. For example, in the "Rotating Wall" compression of a plasma
column, finite k- Trivelpiece-Gould resonances provide the coupling, but the mode is
apparently nonlinear, and no connection has been made to theoretical damping rates
[1,2]. In this, and other circumstances, theory correctly predicts the measured real part
of the wave frequency but cannot explain the mode damping mechanism.

The current study investigates damping of plasma waves where the wavelength
is comparable to the plasma size, and the waves are in the small amplitude linear
regime. Most single species plasmas, being fundamentally finite in extent, cannot
satisfy all of the theoretical assumptions for Landau damping [3]. It is hoped that these
measurements will help in the discussion of how Landau damping is modified in finite
systems and to investigate the form of collisionless damping in trapped non-neutral
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plasmas.

To that end, we present measurements of damped axially symmetric (my=0)
Trivelpiece-Gould modes in pure electron plasmas. The measured rates y/w are found
to be independent of amplitude, independent of magnetic field, and to have a
temperature dependence that does not correspond with linear Landau damping nor with
dissipation due to compressional viscosity, nor with recent estimates of "bounce-
harmonic" damping.

EXPERIMENT

We confine the plasmas in a Penning-Malmberg trap {4,5], shown schematically
in Figure 1. Electrons from a tungsten filament are confined in a series of conducting
cylinders of radius Rw = 1.27 cm, enclosed in a vacuum can at 4.2 K, with background
pressure < 10" torr. The electrons are confined axially by negative voltages
(typically Ve = -200V) on cylinders L1, L2, and L6; radial confinement is provided
by a uniform axial magnetic field, with 1< B. < 4 Tesla. The trap is operated in an
inject-hold-dump cycle. The plasma is dumped onto collector plates which gives a
coarse density profile. The trapped plasma typically has central density 0.5 < o <
5x10° cm®, radius Ry ~ 0.05 cm, and length L, ~ 4 or 8 cm.

The plasma temperature is measured by slowly ramping the dump gate voltage
while measuring the collected charge as a function of confinement voltage. Initially,
particles with the highest energy escape, and these are fitted to the exponential tail of
a Maxwellian to give an estimate to the plasma temperature. For plasmas with thermal
energies T 2 0.2V this measurement is accurate to about 10% [4,6].
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Figure 1. Schematic of CV apparatus with mode excitation electronics.

215




The modes are excited by a short burst (5-20 cycles) at the wave resonant
frequency applied to cylinder L4. The excited plasma wave is measured by detecting
the image charges induced on cylinder LM, using either a low noise amplifier with Zin
= 500 // 500pF or a high input impedance amplifier with Zin = 1 MQ // 500pF; the
choice of amplifier had no effect on the experimental results. This signal is fed into
either a fast digital oscilloscope or into a RF spectrum analyzer. A second generator
can be attached to cylinder L3 (for example) to externally heat the plasma to an
elevated temperature [7].

RESULTS

A typical measurement of the wave dispersion is compared to theory in Figure
2. The measured real frequencies agree closely with numerical predictions of mg=0
Trivelpiece-Gould modes from a solution of the drifi-kinetic equations using the
experimental density profile and temperature [8].

Figure 3 shows the received wave amplitude versus time for different launched
amplitudes; here the driving voltage for each curve is a factor of two bigger than the
previous, starting with 10mV. It can be seen that the wave damps exponentially and
the damping rate y is unchanged for the amplitude changing by more than a decade.

Figure 4 shows the measured scaled damping rates y/w for modes m- = 1,2,3,4
as a function of plasma temperature. Two general trends are apparent: (1) for
temperatures below about 1eV, y/w is less for the higher frequency (i.e. high m.)
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Figure 2. Measured wave dispersion with drift kinetic predictions
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modes; (2) for temperatures above about 1eV, y/w is approximately independent of
mode frequency.

The independence of frequency would be expected for a process such as Landau
damping that only depends on the phase velocity (Vpn = @/k ~ constant).

There are several curves representing numerical calculations of Landau
damping. The first curve, labeled LD, is the standard wave-particle resonance formula
that only depends on the ratio of the wave phase velocity to the plasma thermal
velocity. For low temperatures, the Landau damping rate increases exponentially with
temperature. At high temperatures, this increase is moderated by the increase in mode
frequency and phase velocity.

Some theory work for finite-length plasmas suggests that mode wavelengths are
not strictly given by integer multiples of the plasma length [8,9]. Specifically, for long
columns, Ref. 8 gives a formula for the "effective” plasma length Ler > Ly, with the
mode wavenumber given by k: = na/ Ler. An analysis of the mode potential in terms
of the plasma length gives rise to a summation over all bounce harmonics of the
electron motion. The curves labeled BRH estimate this "bounce-resonant-harmonic"
damping enhancement for the m:=1 and m.=2 modes [10]. Note that the bounce-
resonant curves are always above the single wave resonant curve. Although the
bounce-resonant curve BRH m.=1 is within a factor of 10 of the measurements, the
theoretical dependence on m is opposite to the experimental data.

A theoretical estimate of damping from collision induced compressional
viscosity has been derived using the second viscosity coefficient found in Ref. 5. The
result is y/w =~ 4 (kiAp)’ v./ ®, where k- ~ 7m/Lp, Ao is the plasma Debye length, and
vy is the perpendicular to parallel equilibration rate [4]. For the experiments
presented here, k:Ap s 10%; thus y/w for compressional viscosity is of order 10°. For
the purpose of comparison only, we display v,/ ®,, where @, is the frequency of mode
m:=1.

CONCLUSIONS

The damping of long wavelength axially symmetric Trivelpiece-Gould modes
has been measured. The excited modes appear to be linear, and decay exponentially
at a rate independent of amplitude. The damping rate y/w has been measured over
more than a decade in temperature and shows little agreement with the standard theory
of linear Landau damping nor with viscous dissipation.
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Heat Transport due to Long Range
Collisions

E.M. Hollmann, F. Anderegg, and C.F. Driscoll

Department of Physics
and
Institute for Pure and Applied Physical Sciences
University of California at San Diego, la Jolla, CA 92093-0319 USA

Abstract. Cross-magnetic-field heat transport in a quiescent pure ion plasma is found
to be diffusive and to be dominated by long-range “guiding center” collisions. In these
long-range collisions, which occur in plasmas with Ap > re, particles with impact
parameters 7. < p < Ap exchange parallel kinetic energy only. The resulting thermal
diffusivity xz is independent of plasma density n and magnetic field B. We measure a
thermal diffusivity x which agrees within a factor of 2 with the long-range prediction
xz = 0.49 nwb?A% over a range of 108 in temperature, 50 in density, and 4 in magnetic
field. This thermal diffusivity is observed to be up to 100 times larger than the classical
diffusivity. These long-range collisions are typically dominant in unneutralized plasmas,
and may also contribute to electron heat transport in neutral plasmas.

INTRODUCTION

The study of cross-magnetic-field heat transport in plasmas is an area of active
research relevant to magnetic fusion plasmas 1], astrophysical objects [2}, plasma
processing [3], and basic plasma physics [4]. Heat transport can be broadly catego-
rized as collisional or turbulent. “Collisional” transport is driven by the fluctuating
fields from thermal motions of individual particles, whereas “turbulent” transport
is driven by non-thermal fluctuations such as unstable waves or broadband turbu-
lence.

Collisional transport can occur as a result of direct (binary) Coulomb collisions
and as a result of wave-mediated (multiple-particle) collisions. Direct Coulomb
collisions between particles can occur over distances up to a Debye shielding length
Ap, while wave-mediated collisions can occur over distances as large as the plasma.
dimensions. In a direct Coulomb collision, the character of the collision depends on
the impact parameter p compared to the cyclotron radius r.; here, we distinguish
between “short-range” collisions, with impact parameters p < r. and “long-range”
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collisions, with impact parameters r. < p < Ap. Short-range collisions occur in all

plasmas, while long-range collisions occur only in plasmas with 7. < Ap.
“Classical” transport theory analyzes short-range collisions with p < r.. These

collisions cause scattering between the perpendicular and parallel velocities and

thus drive the perpendicular and parallel velocity distributions toward a Maxwellian

with a single temperature T'. For ion-ion collisions, the (momentum transfer) col-

lision rate [5] resulting from short-range collisions is

16 9. ,Tc

15\/_7anb In{ b) (1)

~ (1.0s™H)T~*n; [1 +0.08 In(T*2B71))

Vi =

where b = €2/T = (0.14 um)T~! is the distance of closest approach. Here. the
numerical values are appropriate to 2*Mg" ions, with density nr = n/107cm™?,
magnetic field B in Tesla and temperature T in eV. Eq. (1) uses the form of the
Coulomb logarithm appropriate for plasmas with r. < Ap [6], where ». = ¢/Q, ~
(0.5mm)T/?B~" and Ap = (T/4re*n]'/? ~ (2.4 mm)T2n7** . These collisions
cause a random cross-field step of the ion guiding centers by a distance of order
r., causing cross-field diffusion of particles, momentum, and heat. The resulting
classical thermal diffusivity x. is given [7] by

2 .
Xe = Viry (

~ (2.5 x 1073em?s™) T712B 20, [1 4 0.08 In(T**B7")] .

(&)
~—

Long-range transport occurs as a result of collisions with hmpact parameters
re < p < Ap. In these long-range collisions, the ions exchange parallel encrgies
over radial distances p. The interaction time is long compared with the cyclotron
motion of the particles, so the cyclotron action p; = mv? /2B of each particle is
conserved and there is no significant change in the perpendicular velocities. There
is also a small E x B drift due to these collisions; this produces negligible heat
transport, but is important for particle and angular momentum transport [8].

The cross-field thermal diffusivity xr resulting from long-range collisions is cal-
culated [9] to be

x1 = 0.49 nob? )} {3
~ (1.1 x 10™%em?s7Y) 77172

This long-range thermal diflusivity y results from pairs of particles with small
relative parallel velocity; particles with large relative velocities do not significantiyv
exchange parallel energy in these 1-D collisions. Any given particle will interact
with other particles with relative velocity Av & (b/Ap)o; and the effective density
of these other particles is An ~ (b/Ap)n, so the resulting thermal diffusivity is
XL =~ AnAvdpA} o~ nob?Ah. Comparing Egs. (2) and (3) suggests that long-range
collisional heat transport will be larger than short-range collisional heat transport



in plasmas with Ap 2 7r.. Single species plasmas are commonly in this regime due
to the Brillouin density limit [10], and the electrons in some neutral plasmas are in
this regime, i.e. Ap 2 7 Tce.

Wave-mediated heat transport is predicted to occur as the result of the thermal
emission and absorption of lightly damped plasma waves over distances p > Ap.
In collisionless plasmas, the resulting thermal diffusivity is expected to scale as [11]

Xw & nO*ApLy (4)

where L7 is the cross-magnetic-field scale length of the thermal gradient. The effect
of wave-mediated heat transport is thus expected to become dominant in plasmas
with very large thermal gradient length scales, i.e. L >> Ap,r.. For collisionless
plasmas, for example, it is estimated that the wave-mediated thermal diffusivity
of Eq. (4) will become larger than the long-range collisional thermal diffusivity of
Eq. (3) if Ly 2100 Ap [9].

Thus, we expect a cross-field heat flux Ty given by

K

Q
Iy = —§n (XLVT“ +x.VT) +Tnp , (5)

where the term I'yp represents a possible heat flux due to non-diffusive effects such
as waves or convection. In Eq. (5), we have separately identified T} to empbasize
the unusual nature of xr,, but for most of our experiments we have T, ~ T, = T'.

Here, we measure collisional heat transport in a quiescent pure ion plasma [12].
These plasmas can be confined in a near-thermal equilibrium state where fluctu-
ation levels are small and transport is dominated by collisions, rather than by
turbulence. The measurements are made on uncorrelated magnesium-ion (Mg")
plasma columns with temperatures 5x 107 < T' < 0.5 eV, densities 0.2 < nr < 10,
and magnetic fields 1 < B < 4Tesla. The measurements show that the cross-
magnetic-field heat flux in these plasmas is diffusive, i.e. I'np ~ 0, with average
thermal diffusivity x = 1.7 x1 3> X.. These measurements are consistent with the-
ory predictions to within the present accuracy of the data. It is not known whether
the factor of 1.7 difference is significant. Here, the thermal diffusivity is expected
to be dominated by long-range collisions, since fluctuation levels in these plasmas
are very small and we typically have Ap > r.. Wave-mediated heat transport is
not predicted to be significant in the present experiments, since Ly < 100 Ap.

EXPERIMENTAL SETUP

The experimental setup used is shown schematically in Fig. 1. Magnesium ions
are created with a metal vacuum vapor arc (MEVVA) [13] and are trapped in a
Penning-Malmberg trap with uniform axial magnetic field B and end-confinement
potentials V, = 200V. Typically, Niy = 5 x 10® ions form a plasma column of
length L, = 14 cm and radius B, ~ 0.5 cm inside conducting cylinders with radius
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Figure 1. Ion trap schematic showing manipulating beam and probe beam geome-
tries.

R,, = 2.86 cm. These plasmas consist of about 70% Mg*, with the remainder being
mostly magnesium hydrides, MgH;}, formed when ions intcract with the residual
neutral background gas (H) at pressure P =~ 4 x 107° Torr.

The radial electric field due to the unneutralized ion charge causes the plasma
column to E x B drift rotate at a (central) {requency of fg = nec/B =
(14.4kHz) n; B~'. Diamagnetic and centrifugal drifts are small. so the total fluid
rotation frequency is f,,; = fg. This rotation is rapid comparcd to the heat
transport times discussed here, so our radial transport measurements are effec-
tively azimuthally-averaged. Individual thermal ions bounce axially at a rate
fo = 9/2L, ~ (7.1kHz) T*(L,/14cm)™!, so we also assume the plasma to be
uniform along the magnetic field lines.

These ion plasmas normally expand radially on a time scale of 7,, ~ 2000 scc
due to azimuthal asymmetries in confining fields. Here, however, the ions are held
in near-thermal-equilibrium steady-state for days or weeks through application of
a weak “rotating wall” potential perturbation [14]. The hcating due to the slow
plasma expansion (Joule heating) or due to the rotating wall drive is balanced by
cooling from collisions with the background neutral gas, and the plasma typically
relaxes to an equilibrium at 7' = 0.05 eV. Usually, the rotating drive is turned off
during the heat transport experiments; however, we find that the results obtained
for the thermal diffusivity are the same with the rotating wall on or off.

The plasma is diagnosed by using laser-induced fluorescence (LIF) from a weak
(= 10 W) continuous 280 nm laser probe beam to nonperturbatively measure
the plasma density, temperature, and fluid rotation velocity. Typically, the probe
beam frequency is scanned through a 325/, — 325, cyclic transition of *!Mg™*
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Figure 2. (a) Measured Mg* density nu,, temperature T', and inferred total charge
density n as a function of radius 7. (b) Measured total fluid rotation vy and
calculated diamagnetic rotation velocity vgiq.

at each radial position; from the measured ion distribution functions, fi(vy,r,?)
or fj(vy,r,t), we obtain the local magnesium density nmg(r), temperatures T (r, 1)
and T)(r,t), and total fluid rotation velocity vtot(r). In the heat transport experi-
ments, the rapid temperature evolution is generally obtained from just the velocity
distribution peaks, that is, fy(0,7,t) or fi(ver,7,t) , since the ion density is con-
stant on the time scales of the measurements. As indicated in Fig. 1, the probe
beam can be aligned parallel or perpendicular to the magnetic field, so that both
T, and T) are measured; for the experiments presented here, however, we can ap-
proximate T\ =~ Ty = T to adequate accuracy. The total charge density n(r) is
calculated as that required to give froi(r) = vin(r)/2nr. Typically, we find that
nmg(r)/n(r) = 0.7 at all radii, so centrifugal mass separation [15] is negligible.

A typical equilibrium plasma is shown in Fig. 2. Here, we display nas,, T', and vsa
measured as a function of radius for plasma that has been held in steady-state for
20 hours by a rotating wall drive [14]. Also shown is the total charge density n and
diamagnetic velocity vy, calculated from the measured nasg(r), T(r), and vige(r).
These steady-state plasmas are typically confined close to thermal equilibrium, i.e.
n, T, and f,.; are relatively constant over the bulk of the plasma.

A temperature gradient is created in the plasma by locally heating or cooling
with a strong (& 1 mW) manipulating beam. This heating or cooling is obtained
by detuning the parallel manipulating beam to the blue or red side of the cyclic
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Figure 3. Measured thermal diffusion starting from locally (r = 0) cooled initial
condition.

transition. The manipulating beam is aligned along the r = 0 axis of the plasma,
thus creating an initial condition with a strong radial temperature gradient. The
manipulating beam is chopped and the plasma temperature and density are mea-
sured using the probe beam during times when the manipulating beam is off.

RESULTS

Heat transport experiments are performed by creating steady-state plasmas with
a strong temperature gradient, then blocking the manipulating beam and mecasuring
the resulting temperature evolution. Figure 3 shows such an evolution. At ¢t = 0,
the cooling beam is turned off, and the central plasma temperature is observed
to rise from T &~ 3 x 107%eV at ¢t = 0 toward the equilibrium temperature of
T =~ .05 eV. For clarity, only £ = 0, 0.1, and 1 sec and the approximate final
equilibrium state ¢ = co are shown; actually, the temperature evolution is measured
with 100 time steps over 0 < t < 4 sec for each radial position.

The temperature evolution of Fig. 3 results from a radial heat flux plus small
external heating terms. The radial heat flux I'; is obtained from the measured

change in local energy density, §(r,t) = Z[2n(r) T(r,)] as

1 r ) . ! )
Ly(ryt) = — /0 r'dr’ [q(r8) = Geat (7', 1], (6)

where the weak external heating or cooling term ..+ is known from independent
measurements, as described below.
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Figure 4. Measured normalized heat flux vs. temperature gradient for experiment
shown in Fig. 3, demonstrating diffusive heat transport.

In Fig. 4, we plot the measured radial heat flux Ty as a function of the tempera-
ture gradient VT obtained from the data of Fig. 3. We plot the heat flux measured
at radii r = 0.1, 0.15, and 0.2 cm, and at times ¢t = 0.1 to 1.9 sec. These radii were
chosen here because they have a strong gradient and a strong signal, i.e. ¢ > Gear.
It can be seen that the gradients and fluxes are largest at early times, and decrease
as the temperature profile relaxes toward equilibrium. Since both classical and
long-range transport predict I'y o< x VT' o T-129T, the displayed T, is divided
by T2 to better illustrate the proportionality with VT

The error bars shown in Fig. 4 are estimates of the random error based on the
level of scatter in the LIF signal; the error shown here is typical of all the data points
in Fig. 4. The dashed line in Fig. 4 is an unconstrained, error-weighted linear fit
to the data; it can be seen that a straight-line fit is a reasonable description of the
measurements. Also, from the intercept of the line, it can be seen that I'yp ~ 0
within the scatter in the data; thus Fig. 4 demonstrates diffusive heat conduction.
In general, our measurements show no consistent signature of non-diffusive heat
flux.

We calculate the local thermal diffusivity y at any chosen radius and time as

2 1 -

X= "5 VT {0

The diffusivity x depends on the local plasma density and temperature, as well as
on the magnetic field. Values of x(n, B, T) were obtained for different equilibrium
plasmas covering a range of 50 in density, 10® in temperature, and 4 in magnetic
field. In Fig. 5, we plot the measured x as a function of temperature 7. The
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Figure 5. Measured cross-magnetic-field thermal diffusivity x plotted as a function
of temperature T', demonstrating heat transport dominated by long-range collisions.

dashed curves in Fig. 5 show the predicted classical thermal diffusivities \. for
the 5 densities and magnetic fields used. The solid line shows the predicted long-
range thermal diffusivity xz, which depends only on temperature. The data points
of Fig. 5 labeled “small §7” correspond to plasmas which are slightly perturbed
away from a known uniformly heated or cooled equilibrium plasma. These small
perturbation measurements are taken at densities 0.5 < n; < 2.5 and magnetic
flelds 1< B<4T.

The measured thermal diffusivities are up to 100 times larger than the classical
prediction, and are independent of B and n. The T-'/2 scaling is obscrved over 3
decades in T', and extends into the low-temperature regime where r. = b. A fit to
the data with x oc 72 gives x = (1.9341) x 1072 em?s~ 1T~ /2 = (0.844.5) vA}, .

BACKGROUND HEATING TERMS

The small external heating correction, ¢..¢, used in Eq. (6) is obtained by mea-
suring the temperature evolution of a plasma which has been uniformly heated or
cooled by a wide manipulating beam. The measurements are qualitatively consis-
tent with a model that includes the Joule heating expected from the slow radial
plasma expansion, and the heating or cooling expected from ion-neutral collisions.

For the heat transport data presented here, the correction to \ due to the external

heating terms is small, since ges:/g ~ 0.1 in the regions with a large temperature
gradient.



DISCUSSION

The cross-magnetic-field heat flux in a quiescent pure ion plasma is observed to
be proportional to the thermal gradient VT, and dominated by long-range collisions
with impact parameter up to a Debye length. These long-range collisions cause heat
fluxes which are independent of magnetic field strength and plasma density: the
observed thermal diffusivity scales as x o n® B°T~1/2, whereas classical diffusivity is
xe x nB~*T~1/2_ At high magnetic field and low densities, the classical prediction
is more than two orders of magnitude too small to explain the observed heat fluxes.
This enhanced heat transport should occur in many nonneutral plasmas, where
Ap > 7. is always satisfied, and may apply to the electron component of neutral
plasmas which satisfy Ap 2 7ree.

Presumably, classical heat transport is also occuring in these systems; we do not
observe this directly, however, since xr > X, for most of our parameter range.
Direct measurements of the equipartition rate vy = %Vi,- between perpendicular
and parallel temperatures Ty and T} in these plasmas have been performed, however
[16]; these measurements verify that short-range velocity-scattering collisions are
occuring as expected, that is, we measure values of v; in agreement with Eq. (1).

Wave-mediated heat transport is not believed to be significant here, since
these plasmas are many, but not thousands, of Debye lengths across; the lowest-
temperature data presented here (T ~ 5 x 107* eV), corresponds to plasmas about

100 Debye lengths across. Future experiments will attempt measure wave-mediated
heat transport in these plasmas.
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2D Collisional Diffusion of Rods
in a Magnetized Plasma Column
with Finite E x B Shear

Daniel H. E. Dubin and Dezhe Z. Jin

Physics Department, University of California
San Diego, La Jolla, CA 92093-0319

Abstract. Cross-field collisional diffusion of test particles is discussed for a non-neutral plasma
column in the 2D E x B regime, where the diffusion is due to the E x B drift of charged rods
(bounced-averaged charges) in the random Coulomb fields of the other rods. If the overall flow has
a finite E x B velocity shear the diffusion is found to be considerably smaller than previous caleu-
lations, which are shown to hold only for a nearly shear-free plasma. Preliminary simulations
showing the effect of shear on the particle diffusion are in qualitative agreement with the theory .

INTRODUCTION

This paper considers cross-magnetic field diffusion of test particles in a non-neutral
plasma confined in a Penning-Malmberg trap. The diffusion is evaluated for plasmas
in the 2D E x B regime, where the axial bounce frequency of individual charges be-
tween the ends of the trap is large compared to both the collision frequency v, and the
characteristic rate for cross-field dynamics. This characteristic rate is typically on the
order of the shear rate » dw(r)/dr in the plasma's E x B rotation frequency @(7). In this
regime the axial dynamics can presumably be bounce-averaged, and the charges are
then treated as 2D charged rods that E x B drift in the fields of the other rods.

Previous theory and experiments on test particle diffusion in non-neutral plasmas was
carried out for plasmas that were not in the 2D E x B regime. For such ‘floppy’ plas-
mas axial dynamics is important and the diffusion coefficient D has the classical scal-
ing, D~ v, rc2, where r. is the cyclotron radius [1,2]. Note that this diffusion decreases
with increasing magnetic field strength as /B

Diffusion of 2D charged rods across a magnetic field has been considered previously
by several authors. One reason for the early interest in this problem was that neutral
plasma experiments often observed anomalously large diffusion coefficients with

CP498, Non-Neutral Plasma Physics III, edited by John J. Bollinger, et al.
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Bohm scaling, D <1/ B, rather than the classical scaling D o<1/ B*. The 2D model
for cross-field diffusion was invoked as one possible explanation for this scaling, since
one can easily show that 2D E x B drift dynamics implies that all time scales (includ-
ing the diffusive timescale) increase linearly with magnetic field strength.

Taylor and McNamara [3] and Dawson and Okuda [4] considered collisional diffusion
in a uniform homogeneous neutral plasma of charged rods as the simplest possible ver-
sion of such 2D transport. Interestingly, the diffusion was thought to depend on
whether the rods were distributed randomly or whether they were given time to equili-
brate and Debye-shield one-another. For the case of random uncorrelated rod posi-
tions in a square box with periodic boundary conditions, the diffusion coefficient was
calculated to be [3]

D™= (1.9/m)"* g ¢ N"/B, (1

where ¢ is the charge per unit length on each rod, and N is the number of rods. The re-
sult depends on the boundary conditions, since the diffusion is due to large scale
‘Taylor vortices’, which are E x B fluctuations with wavelengths on the order of the
system size [4]. However, non-neutral plasmas in a Penning trap are not in periodic
boundary conditions, and more importantly they often have large-scale equilibrium E
x B shear flows. These flows might be expected to disrupt the Taylor vortices and
thereby reduce the diffusion.

In this paper we show that the diffusion coefficient is in fact reduced when the plasma
is sheared, and we also show that the level of shear required for Eq. (1) to be valid is
quite small:

rdw/or< w/~/N. ?)
There has been considerable recent interest in the effect of large-scale E x B shear on
the cross-field transport in neutral plasmas. Such plasmas are turbulent with fluctua-
tion levels much larger than those considered here. Nevertheless, our results showing
the reduction of collisional diffusion in the presence of shear might be thought of as
the simplest possible paradigm for this phenomenon, just as the original shear-frce
case was put forward as a simplified model of homogeneous plasma turbulence.

2D E xB DIFFUSION OF RODS IN THE PRESENCE OF SHEAR

Consider a cylindrically-symmetric non-neutral plasma consisting of a collection of
N+1 identical charged rods of infinite length, with charge ¢ per unit length. immersed
in a uniform magnetic field. The plasma rotates due to the E x B drift of the rods, with
a mean-field rotation frequency w( ).

o
w
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Consider a rod initially located at radial position 7. The rod feels the fluctuating elec-
tric fields due to the other rods in the plasma and diffuses radially according to [5]

D= [dt < 8v,(1)8v,(0) >, 3)
o
where the radial velocity fluctuation is given by the E x B drift as

Sv, = cE, | B,

and the electric field is determined by the other m=1,2,...,N rods:

195 © e
OE, = —;55% Igie 160 g, (r,1,) -

Here, ¢, is the Greens function for the Coulomb potential, Fourier-transformed in the
6 coordinate.

The velocity correlation function is then evaluated using the standard method of inte-
gration along unperturbed orbits, in which each particle is assumed to merely rotate
about the center of the plasma in the cylindrically-symmetric shear flow (1 ):

rm(t) =r, = const, em(t) = 00 + w(l:,)t

Then assuming that the initial conditions for the rods are uncorrelated the statistical
average can be evaluated, yielding

2 o 5 . , .
D =_(g§) J‘ rdrdOn, [, %‘P;(r,ro) 0,1, )OO0, g
i’

0

where_ nyp is the 2D density of rods (in units of cm™). The 6, integral implies that only
I = —I need be kept in the sum, and the time integral yields a § function:

: 2
Dz(%) J ’"d"’”w?l?”z%'@mw 8ll(a(r) - o(r,))-

The 8 function means that only resonant particles cause appreciable transport, since

resonant particles interact for long times and take large drift steps. For a monotonic
rotation frequency profile, the & function implies that r=r, , and evaluation of the re-
maining 7, integral then yields
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where we have assumed an unshielded Coulomb interaction between the rods and ne-
glected image charges in the walls, so that ¢,(r,r)=-1/1.

Note that Eq. (5) displays a logarithmic divergence at large wavenumbers, since close
collisions between rods cause large E x B drifts. The divergence can be cut off by
physical mechanisms that impose an effective maximum possible wavenumber in the
sum, /nqx. There are several possibilities:

1) Guiding center dynamics becomes invalid for length scales smaller than the cyclo-
tron radius, implying lpe~ 7 /7.

2) Rods that are initially close to one another will orbit one-another rather than drift
apart, provided that they are within a trapping distance of order +/cq/(Brow / dr),
implying [, ~~/(Brdw [ dr)/ (cq)

3) In simulations of the diffusion to be presented later, the electric field is evaluated on
a grid keeping wavenumbers only up to /nax roughly of order 500 r/ryan.

To logarithmic accuracy the diffusion coefficient is then

2
= 47° 5‘1) — e ).
b ”(B a0 o mee) (®)

Note that as the shear rate increases, the diffusion coefficient decreases, as one would
expect intuitively. However, Eq. (6) clearly breaks down when the shear is so small
that the diffusion given by Eq. (6) is larger than the Taylor-McNamara result for a
shear free plasma, Eq (1). Comparing Eq. (1) to Eq. (6), D™ < D when

3/2
T 4rcgn b4 Y
Irdw / dr| < ——==1In(!, 20 = In(l )V —7—
19 ( max) BN]/_ (19 ( mnx) N”2Q(.

32 2

which is equivalent to Eq. (2) aside from a numerical factor. When this inequality is
satisfied, the plasma is effectively shear-free and the Taylor-McNamara result applies.
However, for large N the shear rate must be extremely small in order to satisfy this
inequality. This can be easily understood: the shear in the equilibrium flow must be
smaller than the shears created by fluctuations in order for the Taylor-McNamara re-

sult to apply, and the shears created by fluctuations arising from discreteness are of
order a/N'?, '



SIMULATIONS

We have carried out particle in cell simulations of the diffusion of rods in a sheared
non-neutral plasma column. In this preliminary work, N rods were placed randomly so
as to produce an overall mean density profile of form

nyp(r)y=Ar?'@ | 0.05r,, <r<04r,,. @)

This profile was chosen so that

®)

The parameter ¢ characterizes the amount of shear in the plasma: as ¢ increases the
shear decreases.

Simulations were performed on a 512 by 512 square grid, for N varying from 5000 to
100,000 rods, and values of ¢ varying from 0.1 to 100. In order to measure the diffu-
sion coefficient, rods in the range 0.2 < r /ryan < 0.3 were followed, and their change in
radial position, dr(?) = r(t) - r(0), was evaluated. Here ¢ = 0 corresponds to an arbitary
initial time, taken to be approximately one rotation period after the simulation was be-
gun. An average over the rods was then carried out to obtain < or(t)* >, the mean
square change in radial position of the rods.

0011 N=100,000, a=5 ]
A
%
C 0.005 | _
~2Dt
oLl . .. . .
0 5 10 15 20

. . 2
t in units of (B r, , /cQ)

FIGURE 1. Mean square change in position of rods in a non-neutral plasma simulation, meas-
ured in terms of 7. . The number of rods is N= 100,000 and the shear parameter is o.=5.

237



For diffusive motion, this function should increase with time like 2Dt . A plot of
< 8r(t)* >is shown in Fig. 1. As expected, after an autocorrelation time the mean
square change in position does increase roughly linearly with time. It begins to saturate
at late times because the rods start to explore the entire plasma (which has radius 0.4
rwan). The slope of the straight line portion of the curve is taken to be 2D.

In Fig. 2, the result for D is displayed from 4 simulations with ar=1. Here D is meas-

ured in units of ¢ O/B where Q is the total charge per unit length in the plasma. In
these units, Eq.’s (1) and (6) can be written as

a cQ
D=rn—In(l__ )—, 9:

D™ = \/E L, (9b)
7N B

The N dependence of the 2 theories differs. Fig (2) displays Eq.s (9a) and (9b) as
dashed and solid lines respectively. In Eq. (9a) have taken In(/,,,) = 2.7, which gives
the best fit to the data and is a not-unreasonable value given the 0(I) uncertainties in-
herent in the logarithmic approximation used to derive Eq. (9a) and in the precise
value of [, to be used in the theory. The scaling with N of the simulation results
agrees well with Eq. (9a) and disagrees with Eq. (9b), showing that the diffusion is
sharply reduced by the presence of shear, in agreement with our calculation.

- a=1
oW pm
&)
= I
O q
2 1030 . |
g= — Eq(99)
= ~ ~
g S~
a0t T
i i
10* N 10°

FIGURE 2. Measured diffusion coefficient (dots) versus number of rods in the simulation, for
shear parameter o = 1. Also shown as the solid line is the Taylor-McNamara theory, Eg. (9b).
Our theory with shear, Eq. (92), is shown as the dashed line, taking In (/,,,) = 2.7.
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In Fig. 3 we vary the shear parameter o, for 2 values of N. Since the diffusion rate ap-
pears to depend inversely on N for Q fixed and & ~1, we plot N D to remove the N de-

pendence. As expected from our calculation, the diffusion increases as the shear de-
creases until the Taylor-McNamara level is approached. Note that one would not nec-
essarily expect the exact Taylor McNamara result in the limit of no shear (i.e. & — ) ,

since Eq. (9b) was derived for periodic boundary conditions and the simulation was
carried out for a cylindrical plasma. This may explain the discrepancy between Eq.
(9b) and the simulation results in the small shear regime.

T ‘ e
7

~ 5 A P 7 d
5 ! ot 7 o
L Eq. (93)\3 £ 3 o
S 2% .
2 10 e |
o 4
= g
(=) /3’
5 o’ o N=50000

s 7 X _
7 100, 7 > N=100,000| |

0.1 1 10 100

o

FIGURE 3. As shear decreases (i.e. as o increases), the diffusion increases in agreement with

Eq. (92) (the dashed line), until the shear becomes small. Again we take In(/,,) = 2.7. The
Taylor-McNamara theory (Eq. (9b) ) for the 2 values of N shown is displayed as the solid lines.

CONCLUSIONS

We have evaluated the test particle diffusion coefficient for a collection of charged
rods undergoing E x B drift dynamics in a cylindrically-symmetric shear flow. The
theoretical calculation was compared to particle-in-cell simulations of the diffusion,
showing reasonably good agreement with our theory . The diffusion was found to be
greatly reduced by the presence of shear in the equilibrium plasma when compared to

the Taylor-McNamara/Dawson-Okuda theory [3,4], which was shown to hold only for
a nearly shear free plasma.
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The theory should apply to a non-neutral plasma column confined in the 2D E xB re-
gime, for which the bounce frequency is sufficiently large that the plasma particles can
be bounce-averaged and treated as rods. Thus, the diffusion may be measured experi-
mentally in the future, perhaps using the laser-tagging techniques employed in previ-
ous experiments [1] on pure ion plasmas.

The theory may also be thought of as a simplified model for the effect of shear on
cross-field diffusion in a turbulent neutral plasma. As such, it may provide some useful
intuition for the study anomalous transport in the presence of large E x B shear.
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Experimental Test of the Resonant
Particle Theory of Asymmetry-Induced
Transport

D.L. Eggleston

Occidental College, Physics Department, Los Angeles, CA 90041

Abstract. While it is easy to experimentally demonstrate that applied field asymme-
tries produce radial transport, convincing comparisons of experiment and theory have
yet to be made. A key prediction of the theory is that the transport will be dominated
by particles that move in resonance with the asymmetry. For the general case of a
time-varying asymmetry, the resonance condition is w — lwg — kv = 0, where v is the
axial velocity, wg is the E X B rotation frequency, and w, [ and k are the asymmetry
frequency, azimuthal and axial wavenumbers, respectively. We present experiments
on our low density trap in which w, wg, and k are varied and the resulting radial
particle flux is measured. The experiments show a resonance in the flux similar to
that predicted by theory. The peak frequency of this resonance increases with wg and
k, but not in the way theory predicts. The peak magnitude of the measured trans-
port is roughly forty times smaller than the theoretical prediction, and low-frequency
asymimetries are especially ineffective at producing transport.

INTRODUCTION

Plasma, traps of the Malmberg-Penning type have been found to be useful in a
variety of fields including basic plasma physics, atomic spectroscopy, anti-matter
physics, and mass spectroscopy. Early studies of the confinement time of such
traps found good agreement between experiments [1] and a transport theory [2]
based on collisions with neutrals. However, at the lowest neutral pressures the
confinement time was much lower than expected [3] and decreased with machine
length [4]. It was suggested that this anomalous transport was due to the presence
of electric or magnetic fields that break the cylindrical symmetry of the trap. The
presence of such asymmetries would produce a radial component to the E x B
drift that would lead to particle loss. This notion was later supported by further
confinement studies [5] as well as experiments with applied asymmetries [6-8].

These early papers also suggested that the asymmetry-induced transport might
be described by a theoretical model developed in early studies of radial transport
in tandem mirrors [9-13] where static asymmetric end cells produced radial grad-

CP498, Non-Neutral Plasma Physics 111, edited by John J. Bollinger, et al.
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B drifts that largely determined the radial particle flux. A key prediction of the
theory is that the resulting transport will be dominated by particles whose axial
bounce motion and azimuthal drift motion causes them to move in resonance with
the asymmetry. As these resonant particles repeatedly encounter the asymmetry
they take radial steps in the same direction, thus allowing them to diffuse more
quickly than non-resonant particles.

We have recently adapted this theory to Malmberg-Penning traps [14] and in this
paper present our first attempts to test the theory using an experimental device
specifically designed for the task. While the experiments provide evidence for
the dominance of resonant particles they also contradict other predictions of the
theory.

ASYMMETRY-INDUCED TRANSPORT THEORY

The geometry of the non-neutral experiments is cylindrical with an axial mag-
netic field B. The magnetic field is typically strong enough that the Larmor radius
is much smaller than any other scale length in the plasma and all relevant frequen-
cies are small compared to the cyclotron frequency. Asymmetric electric fields are
applied by placing voltages on wall sectors. Under these conditions the basic equa-
tions for a non-neutral plasma are Poisson’s equation, the drift kinetic equation with
a collision operator, and the boundary conditions on the conducting walls. For sim-
plicity we take as our model a plasma of length L with flat ends, thus ignoring end
effects. This allows us to linearize the potential as ¢(r, 6, z,t) = ¢o(r) + ¢1(r, 0, 2, )
where

¢1(r,0,2,t) = > duin(r) - exp {z (%z +10 — wt)} (1)

n,lw

and similarly for the distribution function f. For an electron plasma (¢ = —e)
Poisson’s equation then becomes

1d d 2 8fo nr e 3fo
[;5 % -5 ( ) jl ¢nlw(7' 4We/dvILL'—LML¢nlw( ) (2)

72 2y + lwg —

where wg is the azimuthal E x B rotation frequency of the plasma column, ¢p,,(r)
is the Fourier amplitude of the asymmetry mode characterized by axial mode n,
azimuthal mode I, and frequency w, and the integral is over the axial velocity v.
The form of the resulting radial particle flux depends on the relative size of
an effective collision frequency v.sr and the oscillation frequency wr of particles

: 2
trapped in the asymmetry potential, where ufjff R Vge ("—2") and

2 _ [ e (nmy?_ L don
wT—{m(L> ’I"B d ¢nlw- (3)



When v.5; >> wr, frequent collisions interrupt the trapped particle orbits and
the basic radial step is the radial drift velocity times the time between collisions.
Deviations from unperturbed orbits are small and a perturbation approach is ap-
propriate. This is called the resonant plateau regime. When v.s; < wr, a trapped
particle can complete at least one oscillation before a collision knocks it out of res-
onance. Now the basic radial step is the radial extent of the drift during a trapping
oscillation and the orbits are fully nonlinear. A heuristic derivation of the resulting
radial flux is often employed for this so-called banana regime. The resulting radial
particle flux for the plateau regime is given by (See reference [14] for details)

2
Ny L Cl¢nlu 1 d’no nw rWe a2
Tpiatean= — = — =2 V22— § 4
lat V20t n] [no o VT 4)

rB

and for the banana regime by

Thanana= — Z

ny e (&) ()" ()" Lo, e
n,l,w\/z—% {1_(_@_)2Ld_“’.&}3/2

a2
mar TV2T m“’}e - ®

nr Twe dr

For simplicity we have assumed here that the temperature T is constant with
radius. The variable z is equal t0 v,es/v/27, where Ues = ;L-;r(w —~ lwg) is the
resonant velocity for the asymmetry mode n,l,w. The symbols 7, w,, and v, are
the thermal velocity, the cyclotron frequency, and the electron-electron collision
frequency, repectively.

Tt is worth noting several features of these solutions. Both plateau and banana
regime fluxes involve a sum over all the asymmetry modes produced by the wall

voltages. The square brackets contain a diffusive term ;-4 and a generalized

mobility V22 2z (note that this latter term reduces to eE/kT for w = 0). The
plateau regime flux is independent of the collision frequency and is proportional to
the square of the asymmetry amplitude, whereas the banana regime flux depends
linearly on v, and scales like ¢,11{3 The dominance of the flux by resonant par-
ticles is reflected in the e~ factor which stems from evaluating the Maxwellian
distribution function at the resonant velocity. Note that z can be positive or neg-
ative as w is greater than or less than wg. Thus, while static field asymmetries
(w =0,z < 0) move electrons radially outward (I > 0), an appropriately chosen
asymmetry (w > wg,z > 0) can move particles radially inward as is observed in
"rotating wall” experiments [6,8]. Here we use the convention that w > 0 corre-
sponds to an asymmetry that rotates with the plasma column and w < 0 to one
that rotates against the column.

The presence of w in the variable  provides the experimentalist with an ideal way
of testing the notion that resonant particles dominate the transport. By varying w
one can obtain any value of the resonant velocity v.s and the resulting flux should
exhibit a resonance as vy, sweeps through the distribution function. However this
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FIGURE 1. Computed variations of the normalized Ey at the plama center versus asymmetry
frequency w. The three curves correspond to three plasmna temperatures. The strong variations in
Ey are produced by plasma collective effects and make it difficult to observe the resonant particle
dominance of the radial transport.

approach is complicated by the strong w-dependence of the asymmetry potential
¢niw- Figure 1 shows numerical solutions of Equation (2) for typical plasma para-
meters [14]. We plot Ey = l¢,.,/r at the center of the plasma (normalized to its
value at the wall) as a function of asymmetry frequency w. Note that Ej varies by
many orders of magnitude as adjustments of w produce plasma phenomena ranging
from standing waves (the peaks of the curves) to Debye shielding (the strong dip
around w = wg). These variations in Fp (and thus in the flux I') tend to dominate
or mask those produced by resonant particle effects. This produces, for example,
enhanced transport when the asymmetry is at a standing wave frequency of the
plasma column [6]. Nonlinear collective processes are also possible {15]. These col-
lective effects, although interesting, are not, in our view, essential to the transport
physics. We note, then, that the variations in Ey are reduced as the temperature
is increased and/or the density is reduced (see reference [14]).

These considerations led us to the modified trap design shown in Figure 2. The
plasma is replaced by a biased wire running along the axis of the trap. Electrons
injected into this device have the same dynamical motions as those in a normal non-
neutral plasma (i.e. axial bounce and azimuthal drift motions), but the collective
variations of ¢n,, are eliminated since the lower density (10° cm™3) and higher
temperature (4 eV) of the electrons give a Debye length larger than the trap radius.
Despite these changes, the confinement time scaling with no applied asymmetries
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FIGURE 2. Schematic of the Occidental Trap. The plasma is replaced by a biased wire that
maintains the basic dynamical motions of the injected electrons. Forty wall sectors allow for the
application of asymmetries consisting of essentially one Fourier mode.

[16] shows the same (L/ B)? dependence found in higher density experiments [4],
thus supporting the notion that the transport is a single particle effect.

For the current experiments, up to forty wall sectors are employed to produce
an asymmetry consisting of a single Fourier mode, thus eliminating the sum over
n, |, and w in the flux and making for a simpler comparison between theory and
experiment. Electrons injected into the trap are quickly dispersed into an annular
distribution [17]. At the end of an experimental cycle the electrons are dumped
onto a phosphor screen and the resulting image is digitized. A radial cut through
this image gives the density profile of the electrons. Profiles are taken both with
the asymmetry on and off, and the change in density én(r) is either used directly
to approximate dn/dt or integrated to give the radial particle flux I'(r).

EXPERIMENTAL RESULTS

Our initial data addresses three aspects of the theory: 1) the scaling of transport
with asymmetry amplitude, 2) the dominance of the transport by resonant particles
and 3) the absolute magnitude of the transport flux. Figure 3 shows the scaling
of dn/dt with the amplitude of the asymmetric potential applied to the wall. The
scaling is consistent with plateau regime theory (i.e. ¢?) when the amplitude is
small and falls off to roughly ¢*/® at higher amplitudes. The banana regime
scaling of ¢'/? is not observed.

Figure 4 shows the radial flux vs. asymmetry frequency at three radial positions.
The radial density profile is shown in the inset. The data is qualitatively consistent
with resonant particle theory. When the density gradient is large, the flux should
go like e~=", a Gaussian curve centered where w = wg. This behavior is shown by
the curves for r/R equal to 0.28 and 0.56 (note that wg is set by the center wire
bias and decreases with radius). At the top of the density profile the gradient is
Zero, so we expect an ze™® behavior, and this seems to match the r/R = 0.39
curve. Although not shown, we have verified that the curves shift horizontally in
an appropriate way as the center wire bias (and thus wg) is varied. Also, if the
asymmetry is made to spin opposite the direction of wp (corresponding to negative
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FIGURE 3. Log-log plot of the asymmetry-induced rate of density change dn/dt versus the
asymmetry amplitude at the wall. The scaling is consistent with plateau-regime theory only for
low amplitudes.

values of w), no resonances are observed in the flux.

Figure 5 shows how the peak frequency of these flux resonances varies with
radius and axial mode number n, and it is here that we get our first indication of
discrepancy between theory and experiment. As noted above, the experimental
peak frequency decreases with radius as expected (open symbols), but the decrease
does not match that predicted by theory (filled symbols). Theory also predicts an
increase of peak frequency with axial mode number n. We observe an increase,
but it is not in accord with the theory.

We have also compared the amplitude of the experimentally measured flux reso-
nances with the prediction of plateau regime theory. The result is shown in Figure
6. Although the curves are similar, several discrepancies are clear. As noted
above the peaks (in this case the minima) of the resonances occur at slightly differ-
ent frequencies. More importantly, the value of the experimental flux at the peak
is roughly forty times smaller than the theoretical prediction. Lastly, although the
theoretical curve passes smoothly through w = 0 with a significant positive flux,
the experimental curve shows anomalously low transport near w = 0.

CONCLUSION

We have begun to test the resonant particle theory of asymmetry-induced trans-
port under very simple conditions. Our initial results support the idea that reso-
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nant particles dominate the transport and we observe an amplitude scaling consis-
tent with plateau regime theory. However, several discrepancies between theory
and experiment are observed and it already seems clear that current theory does
not give a complete description of this transport.
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Quadrupole Induced Resonant Particle
Transport in a Pure Electron Plasma

E. Gilson' and J. Fajans?

Department of Physics
University of California, Berkeley
Berkeley, California, 94720-7300

Abstract. We have performed experiments that explore the effects of a magnetic
quadrupole field on a purc electron plasma confined in a Malmberg-Penning trap.
We have developed a model which describes the shape of the plasma and shows that a
certain class of resonant clectrons follows trajectorics that take them out of the plasma.
Even though the quadrupole ficld destroys the cylindrical symmetry of the system, the
theory predicts that if the electrons are off resonance, the lifetime of the plasma is not
greatly affected by the quadrupole field, but near resonance the lifetiine diminishes
sharply. Preliminary experimental results show that the shape of the plasma and the
plasma lifetime agree with the model. We are investigating the lifetime scaling with
various experimental parameters such as the plasma length, density, and strength of the
quadrupole field. This resonant particle transport may be detrimental to experiments
which plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen
created in double-well positron/anti-proton Mahnberg-Penning traps.®

Resonant particle transport has long been suspected as the primary cause of
plasma loss in Malmberg-Penning traps, but there is no conclusive experimental
evidence to support this claim [1-5]. We have found experimental evidence for
resonant particle transport when we apply a quadrupole magnetic field to our sys-
tem. We have also measured the equilibrium shape of plasmas when a magnetic
quadrupole perturbation is present. The results of this research apply directly to
anti-hydrogen creation experiments proposed by the ATHENA and ATRAP col-
laborations. Malmberg-Penning traps will be used to confine positrons and anti-
protons, which should recombine into anti-hydrogen. Quadrupole fields will be used
to confine the neutral anti-hydrogen.

With an axially invariant transverse magnetic quadrupole field, the total mag-
netic field becomes

B = Boz + B,(x# — ), (1)

1) epgilson@physics.berkeley.edu
2) joel@physics.berkeley.edn
3) ATHENA and ATRAP Collaborations.
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where B, is the standard axial field. The self electric fields of the plasma cause it

FIGURE 1. Adding a small transverse quadrupole perturbation to a constant axial field pro-
duces the field lines shown in this figure.

to E x B drift around the trap axis. When this rotation is slow compared to the
time it takes an electron to bounce back and forth across the length of the plasma,
the electrons follow the magnetic field lines shown in Fig. 1. The plasma has a
circular cross section in the middle and has elliptical cross sections at both ends.
The ellipses are rotated 90° from one another. When the rotation is fast compared
to the bounce time, the plasma smears out into a cylinder.

FIGURE 2. The equilibrium shape of a slowly rotating plasma. The lines with arrows (to be
discussed later) show the trajectory followed by an outward moving resonant electron.

We measure the ellipticity € and orientation 8 of the plasma either by imaging
the plasma or by measuring the image charge induced on the trap walls. When
the plasma, is rotating slowly, the quadrupole moment, as expected, is zero in the
center of the plasma, has equal and opposite values at the ends of the plasma, and
is proportional to 3;. When we image quickly and slowly rotating plasmas, we see
the expected circular and elliptical shapes.

Theoretically, € — 1 should scale with 3,/B,, and is in rough agreement with the
data shown in Fig. 5. We do not understand the step in the data at B, ~ 400 G.
The variation in angle is reminiscent of the drive/response phase shift of a damped
driven simple harmonic oscillator as it passes through resonance.

If the rotation rate is such that an electron makes a quarter revolution each time
it travels the length of the plasma, the electron can move ever outwards or inwards
(see the lines with arrows in Fig. 2). For a constant density plasma, the resonance
condition is,

B, = nelL @)

TEN,

Resonant and near-resonant electrons traveling outwards can leave the plasma
very quickly. Diffusion due to this mechanism can be large. There are higher order
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FIGURE 3. Mecasurcments of quadrupole moment along the plasma’s length show the axial
dependence and 3, proportionality that we expect.

FIGURE 4. §3,/B, = 0.004 em™. (a} B, = 32.43 G so the plasma is rotating quickly. We
measurc € = 1.09 and 8 = 53.5°. (b) B, = 500 G so the plasma is rotating slowly. We measurc
€ =1.26 and 6 = —37.5°.

resonances in which the electron makes N/4 (N odd) revolutions as it travels across
the plasma, but these are less important.

Above resonance, when the plasma is rotating slowly, the resonant velocity lies
well within the electron distribution function f(v). There are many resonant elec-
trons and the quadrupole field has a strong effect. Well below resonance, when the
plasma is rotating quickly, the resonant velocity falls in the tail of f(v). Conse-
quently, there are few resonant electrons and the quadrupole field has little effect.

This resonance effect can be seen in Fig. 6. Below resonance [Fig. 6 (a)], the
application of the quadrupole field has no effect on the evolution of the central
density as a function of time until the plasma expands enough so that the resonance
condition is met. The plasma in Fig. 6 (b) begins above resonance so the quadrupole
field has an immediate effect on the central density.

From a series of images taken at successive times, we measure the diffusion
coefficient, D. The plasma images measure the z-averaged radial density profile
n(r,t), from which we compute N(r,t) = [y n{r',#)2nr' dr'.

We write the diffusion equation in polar coordinates, integrate once with respect
to r and rearrange to yield

_ ONJot
D(R) = o onTorh ®)
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FIGURE 5. The scaled ellipticity and angle of the plasma as functions of B, as measured from
images such as those shown in Fig. 4.
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FIGURE 6. By comparing the time evolution of the central density with the quadrupole field
on and off, we can separate the effects of the quadrupole field from other plasma loss mechanisms.

All @ variations have been neglected because the quadrupole field used in the dif-
fusion experiments is typically small.

In Fig. 7 (a,b), we keep §,/B, fixed, as would be the case if the quadrupole field
were due to imperfections in the main magnet coils. When G, # 0, D is the sum
of the diffusion due to both the quadrupole field and background processes. Below
resonance, the quadrupole field has little effect, but above resonance it enhances
diffusion. In Fig. 7 (c,d), we hold G, fixed. For large B,, the diffusion due to the
quadrupole field becomes small and background processes dominate the diffusion.
The anomalous structure in the background (Dg,-p) data needs to be understood
before further study can be completed.

By measuring the relative lifetimes using three different plasma lengths, we see
that the location of the resonance moves in agreement with the change in the
resonance condition. To find the plasma’s lifetime, we measure the time it takes
for the central density to drop to ~ 70% of its initial value. We do this both with
the quadrupole field on and off, then compute the relative lifetime.

We model the results of our experiments by constructing a diffusion coefficient,
D = Muf, where ) is the average step size of a resonant electron, v is the fre-
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quency of collisions that knock an electron out of resonance, and f is the fraction
of electrons that satisfy the resonance condition. We must sum over the higher
order resonances to obtain an expression for D. The result is D = 35 gqq Dn,
where, for a constant density plasma,

2R’n%e* m [B,\* L° —v¥
Dy = mie2 271'L7T(E) N5B? QXP( vl > @)

This formula, suitably generalized for arbitrary n(r), is used in Fig. 7 (b,d).

Clear evidence for resonant particle transport as the mechanism for plasma loss in
Malmberg-Penning traps has been lacking. When applying a magnetic quadrupole
perturbation, we observe resonant behavior that could help to explain plasma loss in
Malmberg-Penning traps. If operating in suitable parameter regime, experiments
planned by the ATHENA and ATRAP collaborations may be able to use both
Malmberg-Penning traps and quadrupole traps. For example, if ATRAP operates
with B, = 2T, n = 108 cm™, L = 1cm, and T = 4 K [6], they will be near the
resonant axial field of 0.7 T and plasma loss due to the quadrupole field may be
too great to tolerate.
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Two Experimental Regimes of
Asymmetry-Induced Transport

Jason M. Kriesel and C. Fred Driscoll

Physics Dept., University of California, San Diego CA 92093-0319

Abstract. In a cylindrical trap, azimuthally asymmetric electric or magnetic fields
(such as inherent trap asymmetries) cause the cross-magnetic-field transport of parti-
cles, leading to bulk radial expansion and eventually to particle loss at the trap walls.
Experiments with applied electrostatic asymmetries identify two different transport
regimes, “slightly-rigid” and “highly-rigid”. Here the plasma rigidity, R = f3/fx, is
the ratio of the axial bounce frequency to the azimuthal E x B rotation frequency. In
the slightly-rigid regime (1 < R < 10), the transport scales as V, R™2, where V, is the
applied asymmetry strength. This R 2 o L2 /B? scaling has previously been observed
for transport due to inherent trap asymmetries. The “V, R™2" mechanism appears to
“turn-off” as the rigidity is increased into the range R 2 10. In the highly-rigid regime
(R > 20), the transport scales as V2 RO,

INTRODUCTION

Non-neutral plasmas are readily confined in simple cylindrical traps for relatively
long periods of time, allowing for many of the experimental studies described in
these proceedings. Typically, confinement is limited by inherent trap asymmetries
which cause particles to move radially and be lost at the trap walls. Despite more
than 20 years of study, this asymmetry-induced transport is not well understood.

In this paper, we present a brief summary of recent measurements of asymmetry-
induced transport in electron plasma columns [1]. We purposely break the az-
imuthal symmetry by applying static voltages of strength V, to sections of the
trap wall (as shown in Figure 1), and measure the induced change in the plasma
density profile. We find that the induced transport rates are well characterized
by the “rigidity” R = ﬁ/ fE, which is the ratio of the thermal axial bounce fre-
quency to the azimuthal E x B drift frequency. Two different transport regimes
are identified: “slightly-rigid” (1 < R < 10) and “highly-rigid” (R > 20).

In the slightly-rigid regime, the expansion rate increases linearly with the applied
asymmetry strength, V,, and decreases with rigidity as R 2. The mechanism re-
sponsible for this so-called “V.! R™2” transport appears to “turn-off” as the rigidity
is increased into the range R = 10 — 20. In the highly-rigid regime, a different
transport mechanism causes transport with radically different parameter scalings.

CP498, Non-Neutral Plasma Physics 111, edited by John J. Bollinger, et al.
© 1999 American Institute of Physics 1-56396-913-0/99/$15.00

256



FIGURE 1. Simplified schematic of the experiment.

In this regime, the expansion rate increases with asymmetry strength as V2 and is
roughly independent of the plasma rigidity.

The results presented in this paper lay an empirical framework from which theory
can progress, and also ties together previous experimental studies. Many previous
studies measured transport due to inherent trap asymmetries in the slightly-rigid
regime. These studies found that the transport also scales roughly as R ™2 on many
different apparatuses [2-5]. The original studies [2,3] were conducted at nearly
constant density and temperature, in which case the rigidity scaling just depends
on the magnetic field B and plasma length L as R™2 oc L2/B2. This same L?/B?
scaling has also been observed for particle loss measurements in experiments on
test-particles in which the particle density is too low to be considered a plasma [6].

Other experiments on applied asymmetries found that the transport rate in-
creases as the square of the asymmetry strength and only weakly depends on the
magnetic field [7]. These studies were conducted on plasmas primarily in the highly-
rigid regime and most of the results can be understood in terms of the scalings
reported in this paper. More recent experiments have found some evidence of en-
hanced transport due to bounce-resonant effects [8,9], but it is not certain exactly
how these experiments relate to those presented here.

ANGULAR MOMENTUM & RADIAL TRANSPORT

In a Penning-Malmberg trap (shown schematically in Figure 1), particles are
prevented from leaving along the trap axis simply by applying a sufficient confining
voltage V, to end electrodes. The primary loss is in the radial direction, across the
magnetic field to the walls of the trap at radius R,,. This radial transport is con-
strained by the conservation of angular momentum, and confinement is guaranteed
in an ideal cylindrically-symmetric trap. In reality, perfect cylindrical symmetry is
never achieved, and confinement is degraded by inherent trap asymmetries.

For our electron plasmas, the mechanical part of the canonical angular momen-
tum is negligible compared to the vector potential part. Thus, the angular momen-
tum for N, electrons with charge —e can be written as
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Lo= 5o Nunl RS~ (4%), (1)

where (r?) is the mean-square-radius of the plasma, and c is the speed of light.
Conservation of angular momentum thus implies d(r?)/dt = 0, and the plasma is
restricted from expanding. Conversely, by breaking the symmetry, one can change
(r?) by torquing on the plasma. Static asymmetries, such as inherent trap asym-
metries, drag on the rotating plasma and cause an increase in (r?), i.e. the plasma
expands. On the other hand, the so-called “rotating wall” exerts a positive torque
on the plasma and causes compression by rotating faster than the plasma [10].
In this paper, the primary experimental quantity is the global expansion rate,

1 d{r?) 1 dL,
11(7.2) = ZT—2>T X — L—o —(—i't— (2)

For the experiments presented here Ny, is conserved. Therefore, V(r2y is directly
proportional to the rate of change of £y, and is unaffected by internal transport
mechanisms which conserve Ly, such as viscous transport [1,11].

EXPERIMENTAL MEASUREMENTS

Measurements were conducted on two different Penning-Malmberg traps known
by the acronyms “CamV” and “EV”. The traps are similar in construction with
electrode radii of R, = 3.5 cm for CamV and R, = 3.81 cm for EV. Both have an
excellent density diagnostic, which is crucial in accurate studies of radial transport.
The primary difference is that the magnetic field on CamV has a much larger range
(B =0.1-10kG) compared to EV (B = 0.1 - 0.5 kG).

The radial density profile n(r) is measured by dumping the plasma out one end
of the trap to a collection device. From the time evolution of the density profile
we calculate local transport quantities, such as the radial flux of particles I'(r), as
well as global quantities, such as the expansion rate v(z).

An example of the change in the density profile due to an applied asymmetry of
strength V, = 3 V is shown in Figure 2(a). The difference in hold times between
density measurements is kept short enough that N, is conserved and the plasma
density and temperature do not change substantially.

Examples of the time evolution of (r?) are shown in Figure 2(b) for 4 different
applied voltage strengths, including V, = 0. Each point is this figure is calculated
from a different density profile using the formula

(r?) = iv”t]: / " drn(r) 1. 3)

At the bottom of Figure 2(b), we display the time dependence of the applied
asymmetry. After the perturbation is ramped on, the plasma expands at a rate,
V(r2)(%), that depends upon the asymmetry strength V,. With no applied voltage
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FIGURE 2. (a) Change in density due to applied asymmetry. (b) Time evolution of (r?) due
to applied asymmetries of different strengths.

(i.e. V, = 0), the plasma expands due to the inherent trap asymmetries. We
subtract off this “background” expansion rate, v2)(0), to obtain the net expansion
rate, Av2)(va), due just to the applied asymmetry,

Avp2y(Va) = Vi2y(Va) — V(52)(0) (4)
We find that this expansion rate is well characterized by the plasma rigidity R.

In terms of the axial magnetic field B, the average plasma density n, length L, and
temperature T, we approximate the rigidity for each plasma as

R = fi/fe ~ 146 [1fG] [1ZV]1/2 [107 Zm"“]_l [1OIém] _1' 5)

EXPERIMENTAL RESULTS

The voltage dependencies of the expansion rate are shown in Figure 3 for the
two different transport regimes. For the slightly-rigid plasma (R = 2.5) shown in
Figure 3(a), the expansion rate increases linearly with applied voltage (i.e. Ay2)
V1) over two orders of magnitude in V,. This scaling is in direct contradiction
to current theories of transport due to bounce-resonant particles, which predict
either a V2 or V.//2 dependence [9,12]. The arrows at the bottom of the figure
indicate the effective strength of inherent trap asymmetries for EV and CamV as
well as published estimates for traps at Occidental College [6] and the University
of California at Berkeley [7]. Figure 3(a) thus shows that the V! scaling occurs for
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FIGURE 4. Net expansion rate at V, = 1 V vs the plasma rigidity.

asymmetry strengths on the order of (and even less than) the inherent asymmetries
in many typical Penning-Malmberg traps.

The voltage scaling is different for a highly-rigid plasma. The expansion rate
for these plasmas increases as A2y X V2 even for relatively large asymmetry
strengths, as shown in Figure 3(b) for a plasma with R = 62.

In addition to the voltage dependence, we have measured asymmetry transport
for a range of density, length, temperature, and magnetic field. The scaling of the
expansion rate with these plasma parameters is condensed to a dependence on the
rigidity, as shown in Figure 4. The points in this figure are obtained from measure-
ments of A2y vs V, for each set of initial conditions. The voltage dependence is
scaled out by fitting each data set to a power-law; for a slightly-rigid plasma we
fit to V!, and for a highly-rigid plasma we fit to V2. We evaluate the data fits
at V, = 1 V, and plot the results in Figure 4 as a function of the rigidity of the

plasma. For example, fits to the data sets shown in Figure 3 yield values of 1.2 for
R =2.5 and 5.4 x 10~* for R = 62.

In Figure 4, the expansion rate for slightly-rigid plasmas is shown to decrease

with plasma rigidity approximately as Av2y o R ?x ',_},2 é“: . In this regime, the

expansion rate is well approximated with the simple formula {1}
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Avyzy = Tsec™ [11%7] R™2  (slightly —rigid), (6)

where R is approximated by Equation 5.

As the plasma rigidity is increased, not only does the voltage dependence change
(as shown in Figure 3), but the dependence on plasma parameters changes also.
The V! R~? mechanism appears to “turn-off” as the rigidity is increased into the
range R 2 10. This “turn-off” is not understood, but may be an indication of the
bounce motion becoming a good adiabatic invariant at high rigidity.

For a highly-rigid plasma, the transport is independent of rigidity, as shown by
the circular points on the bottom right of Figure 4. For this data, the rigidity
was primarily varied by changing the magnetic field; therefore, the independence
in rigidity is more accurately an independence in magnetic field (i.e. Ay2y o BY).

Cross-field transport that is independent of the magnetic field strength has been
observed in other experiments which measured the damping of the m = 1 dio-
cotron mode [13]. These measurements were found to agree very closely with so-
called “Rotational-Pumping” theory [14]. A similar mechanism may be causing
asymmetry-induced transport in the highly-rigid regime; however, calculations of
Rotational-Pumping theory appropriate to the perturbations applied here have not
yet been made.

In addition to the observed independence with magnetic field, the expansion
rate in the highly-rigid regime has been found to be roughly independent of length
and inversely proportional to both density and temperature. For this (somewhat
preliminary) data, the transport rate is approximated with the formula {1]

Va 2 T -1 -1
Avgzy x5 x 107 sec™ [1—\—/—] [W] [IOTZn:"] (highly —rigid). (7)

DEPENDENCE ON AXIAL AND AZIMUTHAL
VARIATIONS

In the remainder of this paper, we present results concerning the dependence
of the measured transport on the axial and azimuthal variations of the applied
asymmetry. We begin by considering the decomposition of an asymmetry applied
at r = R, into Fourier vacuum fields of relative amplitude A, x.:

®,(r,0,2) =V, Y A, (L) ™l gimkoz/L (8)
m,k. Rw

where k, describes the axial dependence and m describes the azimuthal dependence.

For all the data shown in Figures 3 and 4, a positive voltage +V, was applied

to a wall patch on one side of the plasma and a negative voltage —V, was applied

to a patch on the opposite side (as shown in Figure 1). We label this an m =1



asymmetry, in terms of its dominant azimuthal mode number. The wall patches are
of fixed length of about 4 cm. In general, the plasma extends beyond the patches
(as shown in Figure 1), which means the plasma “sees” an asymmetry with an
axial variation. Properly considered, the asymmetry has many different k, Fourier
modes, but we simply refer to this case as a k, # 0 asymmetry. The data in Figure 3
and all the solid points in Figure 4 are for k, # 0 asymmetries.

We find that the V! R™? transport mechanism is not active if we apply the
asymmetry over the entire axial extent of a short (L ~ 4 cm) plasma. In this
case, k, = 0 and Equation 6 is not valid. Instead, the expansion rate follows a
Avgzy o< V2 dependence regardless of whether the plasma is slightly- or highly-
rigid. Also, the magnitude of the expansion rate in the slightly-rigid regime is
about a factor of 10 less for a k, = 0 compared to a k, # 0 asymmetry of V, =1 V.
This latter result is shown in Figure 4, where the open points are for k, = 0.
Therefore, it appears that the plasma must be slightly-rigid and the asymmetry
must have some axial variation for the V! 2 mechanism to be active.

In addition to measurements for m = 1 asymmetries, we have also measured
transport due to nominal m = 2 and m = 4 asymmetries. We find that the global
expansion rate Ay, does not depend strongly on the azimuthal variation in the
asymmetry [1]; however, the radial dependence of local transport measurements are
qualitatively different.

In Figure 5, we shown the effects on the density profile n(r) of a slightly-rigid
plasma (R = 2.5) due to the inherent trap asymmetries, and due tom =1, m = 2,
and m = 4 applied asymmetries. Here the asymmetry is k, # 0 applied near the
axial middle of a long (L = 30 cm) plasma. In all four cases, the plasma has the
same initial density profile (dashed curves), but the different asymmetries cause the
plasma to evolve to different final density profiles (solid curves). The time between
profiles is At = 0.033 sec, and we plot An(r)/At in the top portion of each figure.

The inherent asymmetries cause a relatively small amount of transport only at
the radial edge of the plasma. In contrast, an m = 1 asymmetry causes transport
across the the entire plasma. The m = 2 and m = 4 asymmetries cause a similar
amount of transport near the edge of the plasma, but the density near the center
of the plasma is not strongly affected. The contrast is particularly striking between
the m = 1 and m = 4 asymmetries.

From the measured change in density, we calculate the local radial flux of particles
for the different m number asymmetries as I'(r) = —2 7 dr'r’ -A—%T—'l. The fluxes
are shown in Figure 6 to vary as I'(r) «c r™ over the interior of the plasma. The
dashed curve in the figure is the initial density profile, which is plotted to show
that the flux goes to zero at the edge of the plasma (as expected).

In the slightly-rigid regime, not only does the global transport depend linearly
on the applied voltage (i.e. A2y o« V,), but the local flux appears to vary linearly
with the local vacuum field of the asymmetry (i.e. I'(r) o< V4 (r/Ry)™). This
is somewhat surprising, because one might have expected the asymmetry to be
“shielded” from the center of the plasma, and the transport to occur just at the
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radial edge of the plasma. However, as was shown in Figure 5(b), transport can
oceur over the entire plasma with no apparent effects due to shielding.

SUMMARY

We measure transport caused by static azimuthally asymmetric voltages applied
to wall patches on cylindrical traps. We identify two different transport regimes,
slightly-rigid and highly-rigid, in which two different mechanisms dominate the
transport. The parameter dependence in these two regimes are summarized in the
table below. In terms of the applied asymmetry strength and rigidity, plasmas
expand at a rate that scales as Av2y < Vg R2 in the slightly-rigid regime. This
mechanism is not active when the rigidity is too high, nor when the asymmetry is
applied over the entire plasma. In the highly-rigid regime, plasma expansion scales
as Aygey & V2R®, which is independent of the magnetic field strength.

Regime Voltage Dependence | Parameter Dependence
Slightly Rigid (1 < R < 10) 1% R? o 8L
Highly Rigid (R > 20) V2 BL (preliminary)

This work supported by ONR #N00014-96-1-0239 and NSF #PHY-9876999.
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Experiments on Viscous Transport in
Pure-Electron Plasmas

Jason M. Kriesel and C. Fred Driscoll

Physics Dept., University of California, San Diego CA 92093-0319

Abstract. Viscous transport in pure-electron plasmas is a rearrangement of parti-
cles due to like-particle interactions, eventually leading to a confined global thermal
equilibrium state. The measured transport is observed to be proportional to the shear
in the total (B x B + diamagnetic) fluid rotation of the plasma, for both hollow and
monotonic rotation profiles. We determine the local kinematic viscosity, &, from mea-
surements of the local flux of electrons. The measured viscosity is 50 — 104 times larger
than expected from classical transport due to short-range velocity-scattering collisions,
but is within a factor of 10 of recent theories by O'Neil and Dubin of transport due
to long-range drift collisions. The measured viscosity scales with magnetic field and
plasma length roughly as k « B/L. This scaling suggests a finite-length transport
enhancement caused by particles interacting multiple times as they bounce axially
between the ends of the plasma.

INTRODUCTION

Like-particle interactions cause a non-neutral plasma to evolve toward the global
thermal equilibrium state of rigid rotation and essentially uniform density. This
cross-field transport to thermal equilibrium was previously observed in 1988 by
Driscoll et.al. using short hollow plasmas [1]. The global rate at which the plasma
approached equilibrium was found to be orders of magnitude faster than classical
theory predictions and to scale differently with magnetic field.

In this paper, we summarize recent detailed measurements of like-particle trans-
port in electron plasma columns [2]. The radial flux of electrons is well described
by a local model of viscosity, in which the transport is driven by local shears in
the fluid velocity of the column. From measured density profiles we experimentally
determine the local coefficient of viscosity and compare the results to theoretical
predictions. We find that recent Long-Range theories, which consider interaction
distances on the order of a Debye length, are in much better agreement with the
measurements than Classical theory, which only considers interaction distances on
the order of a cyclotron radius.

CP498, Non-Neutral Plasma Physics 111, cdited by John J. Bollinger, et al.
© 1999 American Institute of Physics 1-56396-913-0/99/$15.00
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THEORIES OF VISCOUS TRANSPORT

Comparisons between measurements and theory are based on a standard model
of viscous transport in a cylindrically-symmetric fluid [3]. Here, we are concerned
with the radial transport due to shears in the azimuthal velocity. This transport is
described by the (r,8) component of the stress tensor,

Owior

P1'0=—‘77,r ar ? (1)

where 7 is the coefficient of viscosity and wir = wg +wp = 55 [%? - ﬁQ%IT_Tl] is
the total (E x B + diamagnetic) rotation frequency in the azimuthal direction.

The viscosity coefficient, in effect, describes angular momentum exchange be-
tween interacting particles. It has the form 1 = m.nvess 6%, where vefy is the
effective collision frequency of momentum exchange, and ¢ is the distance over
which the electrons interact. In this paper, we plot the kinematic viscosity «,
which is 7 scaled by the electron density n and mass m.,

K

i

2
—— —-I/effts . (2)
A simplified summary of theoretical predictions for « is displayed in the table below.
Classical theory [4] describes transport due to velocity-scattering collisions be-
tween electrons separated by a distance on the order of the cyclotron radius (i.e.
§ ~ r.), as shown in Figure 1(a). These interactions occur at an effective rate on
the order of the electron-electron collision frequency, i.e. Vess ~ Vee = Ve In (1/b),
where v, = n 7 b?, 7 is the thermal velocity, and b is the distance of closest approach.
Long-Range theories by Dubin and O’Neil [5-7] describe transport due to E x B
drift collisions, as shown in Figure 1(b). The “3-D” version of the theory [5] con-
siders an infinite length plasma, so electrons effectively collide only once. The
interaction distance is a Debye length, i.e. § ~ Ap, and the effective collision fre-
quency is Vess ~ Ve In(wp/Vee), where w, is the plasma frequency. In a non-neutral
plasma, this Long-Range prediction gives a substantially larger viscosity coefficient
than Classical theory, since Ap > 7.

Interaction Effective Collision | Scaling of £ with

Distance 0 Frequency v,y | B-field & Length
Classical Te ve In(r./b) B2[L?
Long- | 3D Ap Ve In(wy/Vee) BOLY
Range | 2D || Aprew, |L5220r Ve Neat B'L3
Empirical AD Ve (1 + Neont) l B!
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FIGURE 1. Cartoon of electron-electron interactions as described by (a) Classical veloc-
ity-scattering theory (b) Long-Range E x B drift theory.

Enhancements to the Long-Range viscosity are predicted to occur when finite
length effects are included in the theory; but these effects are not yet understood in
detail. As electrons bounce axially between the ends of the plasma (with thermal
rate f, = ©/2L), they “collide” N,y = fo/|m Bwg /Or| times before being sheared
apart. In the current “2-D” Long-Range theory [7], the bounce motion is averaged
out and electrons are considered to interact as rods of charge. The interaction
distance is listed in the table and the effective collision frequency is v, £f ™~ Ve N
This theory applies to plasmas with either monotonic or hollow rotation profiles,
whereas a previous version [6] only applied to hollow plasmas.

In the table, we also list an empirical viscosity formula, which uses the interaction
distance of the 3-D Long-Range theory (6 = Ap) and an effective collision frequency
similar to that of the 2-D Long-Range theory (ves; = v (1 + No)). We find that
this simple empirical viscosity provides the best agreement with the measurements.

MEASURED VISCOSITY

We determine the radial particle transport from measurements of the density pro-
file of the plasma n(r). The local radial flux of particles, I'(r) = -1 7 dr'r’ %tﬂ,
is calculated from the change in density An(r) over a duration At, and the local
experimental stress (or flux of angular momentum) is Po(r) = ££ & [Fdr'r'2 I'(r').
Motivated by the viscous model, the kinematic viscosity is then calculated ex-
perimentally as the ratio of the measured stress to the shear in the plasma

_ P;-(T) - - -
Ke(r) == ) P O T where w,, () is determined from the measured density
n(r) and temperature 7.

Figure 2 shows the evolution of the radial density and rotation profile at three dif-

ferent times. Initially, the plasma has substantial density gradients and rotational

shear. The plasma rearranges itself to eliminate the shears; as a consequence, some
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FIGURE 2. Example of density profile evolution due to viscous transport.

electrons move radially inward while others move outward. The angular momen-
tum is conserved throughout the entire evolution shown in Figure 2, indicating the
transport is due to like-particle (internal) interactions. In addition, the local flux
of particles appears to be driven by the local shears in the total plasma rotation,
in verification of the viscous model [2].

The local kinematic viscosity k. (r) is calculated for small values of At so that the
plasma parameters do not vary substantially, e.g. between ¢; = 0.1 sand £, =0.3 s
in Figure 2. We then average r,(r) over the radial region near the density peak
(where the signal to noise is best) to obtain a single number «, for any given set
of initial conditions.

Measurements of the kinematic viscosity for relatively short plasmas are shown
in Figure 3 as a function of the confining magnetic field. The measured viscosity
is as much as 4 orders of magnitude larger than predictions from Classical theory
and increases with magnetic field roughly as s, o< B'. Predictions of the 3D
Long-Range theory, while much closer than Classical theory, are smaller than the
measured values and scale as k o< B®. The 2D Long-Range theory prediction has
the B! scaling, but is about 10 times larger. An additional result is that we find
no substantial difference between the measured viscosity for a hollow profile and
that for a monotonic profile.

We have measured the viscosity for different length plasmas, and find the ap-
proximate scaling &, o< 1/L [2]. (Note: This scaling is in sharp contrast to the
observed increase in (external) asymmetry-induced transport with plasma length
for these “slightly-rigid” plasmas [2,8].) The viscosity coefficient also appears to
depend upon the E x B shear in the plasma, as described by Neou.

The entire parameter dependence is summarized by Figure 4, which displays the
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FIGURE 3. Kinematic viscosity, x, versus magnetic field, B.

scaled kinematic viscosity /v A}, as a function of the average number of collisions
Neou- The data roughly follows the simple empirical formula

K= (1 + Nw”) V. /\% (3)

In terms of the rigidity R = 27 f,/wg, the plasmas used in this study were
“slightly-rigid” with 1 S R < 10. The prediction from the 3D Long-Range theory
is in agreement with the measured data for N,,; = 1, where the plasma is somewhat
“floppy” (R < 1) and the enhancement due to multiple collisions is weak. At larger
values of Ncu, the plasma is “slightly-rigid” and the measured viscosity is larger
than the 3-D predictions by an amount that is approximately proportional to N,..
Further experiments are planned using “highly-rigid” plasmas (R > 10) at larger
magnetic fields (up to B = 10* G) to obtain the viscosity at even larger values of
Ncoll-

In other experiments, the 3-D Long-Range theory of like-particle interactions
has successfully predicted coefficients for heat [9] and test-particle transport [10].
Both these studies were conducted on “foppy” ion plasmas, for which N.; < 1.
Experiments have not yet tested the 2-D Long-Range predictions [11] for these
coefficients at higher values of N;.
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SUMMARY

We determine the effective viscosity in electron plasmas from measurements of
the local flux of particles. The measured viscosity disagrees strongly with Classical
velocity-scattering theory, but agrees well with 3-D Long-Range E x B drift theory
when the plasma is somewhat “floppy”. At higher plasma rigidity, finite length
effects appear to cause an enhancement to the viscosity which scales roughly as
the average number of collisions Ny < B /L. A 2-D theory predicts such an
enhancement, but gives viscosity coefficients about 10 times too large.

This work supported by ONR #N00014-96-1-0239 and NSF #PHY-9876999.
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Viscous Expansion of a Non-neutral Plasma
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Abstract. Viscous dissipation is shown to cause radial expansion of asymmetric non-neutral
plasmas. Energy balance considerations are used to explain some of the features of the ex-
perimentally observed scaling law for the confinement time of azimuthally asymmetric non-
neutral plasmas.

INTRODUCTION

Pure electron plasmas have been confined in the laboratory in azimuthally
symmetric traps for hours (1). The long confinement time was explained theoretically
using the conservation of canonical angular momentum (2). In the absence of azi-
muthal symmetry canonical angular momentum is not conserved and this theory
would not apply. To test whether good confinement would still be obtained, experi-
ments were carried out with deliberately applied large asymmetries (3). Surprisingly,
long confinement times were observed even in the presence of applied asymmetries.
From the experimental data a scaling law for the confinement time was derived (4).
Theoretical models were provided for the equilibrium and stability of the asymmetric
plasmas (5-7) but no theoretical explanation was provided for the scaling law for con-
finement time.

Recently Eggleston and O’Neil (8) have developed a theoretical model which
explains some of the features of the scaling law. Starting from the drift kinetic equa-
tion the model computes the radial transport assuming it to be dominated by particles
which move in resonance with the applied asymmetry. In the present study we sug-
gest an alternative theoretical explanation based on a fluid model for the plasma. Ex-
planation for the degradation in the confinement time due to asymmetry is based on a
simple physical reasoning. Imposition of asymmetry causes deviation from a rigid
rotor equilibrium, resulting in viscous dissipation. For a non-diamagnetic, low density
non-neutral plasma this energy dissipated must come from the electrostatic energy of
the plasma, consequently the plasma must expand radially. The expansion rate can be
obtained from energy balance. This is used to explain some of the features of the
Notte-Fajans scaling law (4).

CP498, Non-Neutral Plasma Physics I, edited by John J. Bollinger, et al.
© 1999 American Institute of Physics 1-56396-913-0/99/$15.00
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ENERGY BALANCE IN THE PRESENCE OF VISCOSITY

We consider a cylindrical column of non-neutral plasma surrounded by a vac-
uum region, enclosed, in turn, by a grounded conducting wall. The governing equa-
tions in the plasma, assuming a fluid model, are

on .
—+V.nv)=0, 1
= (nv) ey
. 05, do
0=gn(-Vo+vxB)-Vp+ 2, 2, Dz 2
gn(-Vo+vxB)-Vp > o )
Vig=-Zn, ©)

g

where n, v, and p are the number density, fluid velocity, and pressure of the plasma,
Gx, Oy, and o are the viscous stress vectors acting on planes normal to the x, y, and z
directions, in a Cartesian coordinate system (x,y,z), ¢ and B are the electrostatic po-
tential and the magnetic field, g is the charge on each particle of the plasma and ¢ is
the permittivity of free space. We have assumed that plasma inertia can be neglected.
In the vacuum the electrostatic potential satisfies

Vie=0. “)
Integrating the scalar product of equation (2) with v over the plasma volume, we ob-
tain, after some algebra

0
—le,0—VodlV
J“q’at ¢

=j{p(v-v)—o‘x-Q—Gy-ﬂ—cz-g}dV, )
H ox Oy oz

where P represents the plasma volume. In deriving equation (5) we have used equa-
tions (1) and (3) and it has been assumed that » goes smoothly to zero on the plasma
boundary and no work is done by pressure and viscous stresses on the plasma bound-

ary, which would be true for a stress free boundary. From equation (4) it readily fol-
lows that

- fe02vig v =0, ©®
S5 %

where V represents the vacuum region. Adding equations (5) and (6), using the iden-

tity
0 0 o1 2
—Vip=V-{o—Vo|-=|=|\Vg| |,
P’ ? (q)ﬁt q’) 6t[2‘ 9 )
using continuity of ¢ and its normal derivative at the plasma vacuum boundary and
assuming ¢ =0 on the conducting wall, we obtain

— =-D-W. O]

dt
Here
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1 !
U= J—580|V¢I2 dv + Vj580|vq>[2 v, ®)

is the electrostatic energy

w=-[p(V-v)av, )
»
is the work done in compressing the plasma and
D= jcb av, (10)
r
where
q;.___cx.i...c’.ﬂ_,_g_.?i, (11)
x oy ooz

which is called the dissipation function, represents the energy dissipated by viscosity
in a unit volume. If we assume that the plasma compression term W can be neglected
then equation (7) shows that the energy dissipated by viscosity comes from the elec-
trostatic energy. By the first law of thermodynamics this is converted to internal en-
ergy of the plasma.

APPLICATION TO A NON-CIRCULAR PLASMA

We now compute the viscous dissipation for a plasma column of non-circular
cross-section. We assume that the dissipation function has the same expression as for

a Newtonian fluid. Then, in cylindrical coordinates (r,6,z), assuming v, =0,
0/6z =0, we have (9)

2 2 2
o=2p [ L] (10, 2| (L P Yo 1OV,
or red r 28{or r r o0

2
%12 ) } 1)
3\or. rod r

where p is the coefficient of viscosity. To evaluate ® we need the velocity distribu-
tion, which we compute using an inviscid model. Including viscosity would lead to
corrections of higher order in p. Therefore, the dissipation computed using the veloc-
ity distribution from an inviscid model would be correct to leading order in pu. For
simplicity we also neglect pressure. Then equation (2) reduces to

-Vo+vxB=0. (13)
In the inviscid model there is no radial expansion and equation (1) reduces to
\2 (nv) =0. Since we assume v, =0, §/8z =0, we can write

nv=Vyxe,. (14)
From the component of equation (13) parallel to v it follows that y = x((p) Then from
equations (3) and (13) it readily follows that
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Ve = F(9), s
where F(o)=(gB, /€, )dy/do . To construct an equilibrium with a non-circular cross-
section we choose, for simplicity, F ((p) = C = const. and assume a plasma boundary

r = afl + &(cos 20 ~1)], (16)
where ¥ is a measure of ellipticity. We assume K <<1 and use it as an expansion pa-
rameter to solve perturbatively for the equilibrium. We obtain

2
o=-Slar?)+ 89 _C¥ 2 osn0 4 0f), an
4 2 2
v =—§—0(%—Er00526)e9 -%(Ersin26)e,+0(ﬁ2). (18)

From equations (9) and (18) it is readily seen that W =0. Substituting from equation
(18) in equation (12), we obtain

2

D= 4;{9—_‘(—) .

B,
Substituting in equation (10) the dissipation in unit length of the plasma column, cor-
rect to leading order in ¥ and p, is
w N
g.B; na’
where A is the charge per unit length of the plasma.

For computing the electrostatic energy of the plasma we neglect ellipticity.
Including ellipticity would lead to higher order corrections in K. For a plasma col-
umn of uniform charge density and radius a surrounded by a grounded conducting
wall of radius b the electrostatic energy per unit length is

2 2
U= » + A lné, (20)
l6ne, 4ne, a

where A is again the charge per unit length.

Substituting from equations (19) and (20) in equation (7), and using W =0 we
obtain

da® 32px’

dt  e,B

The confinement time of the plasma is defined as the time for the central density to
fall by a certain amount (4), alternatively, for the radius to increase by a certain
amount. Then from equation (21) it is readily seen that the confinement time scales as

B; / px’ . Recent transport theories (10), supported by experimental observations, in-

D=4p : (19)

@1

dicate p~ B,. The confinement time, therefore, scales as B,/k”. It can be readily
shown, as in (11), that X is linearly related to a perturbing potential ¥, applied on the
wall to produce the ellipticity. Therefore, the confinement time is predicted to scale as
B,V,? which is in fairly good agreement with By, observed in experiments. Our
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theoretical model, however, cannot explain the dependence of the confinement time on
density and temperature, observed in experiments.

DISCUSSION

Pure electron plasmas in azimuthally symmetric traps have been observed to
reach a state of global thermal equilibrium in which the plasma rotates as a rigid body
(12). It has been recognized that non-rigid rotor equilibria would have viscous dissi-
pation, which causes entropy generation, and, therefore, cannot represent a state of
thermal equilibrium (13). For a non-circular cylindrical equilibrium, using energy
balance considerations we have shown that viscous dissipation leads to radial expan-
sion of the plasma. We have used this to explain some of the features of the scaling
law for the confinement time of an electron plasma in a trap with applied asymmetry.

We now discuss some future areas of research relevant to the role of viscous
dissipation in the relaxation of non-neutral plasma configurations. The expansion of
an electron plasma due to collision with neutrals has been modelled by Davidson and
Moore (14) using a fluid model. It would be relevant to carry out an analysis on the
same lines to compute the evolving density profile of a non-neutral plasma expanding
due to its own viscosity. However, the presence of derivatives of velocity in the vis-
cous term, as opposed to the collision term in ref . (14), which is algebraic in the ve-
locity, makes this task more difficult.

In non-neutral plasmas, besides azimuthally asymmetric equilibria, viscous
dissipation could play a significant role in many other situations. For example, in
toroidally confined non-neutral plasmas where again analytical studies indicate a non-
rigid rotor equilibrium there would be viscous dissipation. To provide the energy for
viscous dissipation the plasma would have to either expand in the minor radial direc-
tion or contract in the major radial direction. Since there are two degrees of freedom
energy balance alone cannot predict the evolution. The viscous evolution of a toroidal
non-neutral plasma could form the subject of a future study. Furthermore, in experi-
ments an initial rapid expansion of the plasma has been observed (4) even in azi-
muthally symmetric traps. This again could be due to viscous dissipation in evolving
from a non-rigid rotor equilibrium to a rigid rotor state. In symmetric traps, during the
evolution to thermal equilibrium, an increase in the plasma temperature has been ob-
served. This could be due to the energy dissipated by viscosity.
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Abstract. A pure electron plasma is confined in a Malmberg-Penning trap and its
confinement and stability properties are studied. Of particular interest are the effects
that collisions between plasma electrons and background neutral gas atoms have on
the plasma expansion and on the evolution of the m = 1 diocotron mode. Essential
features of the m = 1 diocotron mode dynamics in the absence of clectron-neutral
collisions have been verified to behave as expected. The mode frequency, the resistive
growth rates, and the frequency shift at nonlinearly large amplitudes are all in good
agreement with predictions. When background neutral gas is injected, the evolution
of the mode amplitude is found to be sensitive to the gas pressure down to pressures
of 5 x 10710 Torr, the lowest base pressure achieved in the EDG device. The evolution
of the plasma density profile has also been monitored in order to examine the shape
of the evolving density profile, and to measure the expansion rate. The density profile
has been observed to expand radially while maintaining a thermal equilibrium profile
shape, as has been predicted theoretically. The plasma expansion rate is affected by the
background neutral gas pressure, but the measured expansion rate is generally faster
than the expansion rate predicted by considering only electron-neutral collisions.

I INTRODUCTION

This paper summarizes recent experimental results [1} on the effects of back-
ground gas pressure on the expansion of the electron density profile and the dy-
namics of the m = 1 diocotron mode in the Electron Diffusion Gauge (EDG) ex-
periment [2,3]. The EDG device [2,3] is a cylindrical Malmberg-Penning trap with
the following characteristic operating parameters: wall radius R,, = 2.54 c¢m; end
electrode potentials -145 V; axial magnetic field in the range 100 G < B < 600 G;
field variation less than 0.2 %; and base pressures of 5 x 1071° Torr. The source of
electrons is thermionic emission from a thoriated tungsten filament (R; = 1.27 cm),
which produces a long column of electrons (L, ~ 15 cm) confined axially between
the end electrodes, with characteristic line density 107cm™! < Ny < 7 x 107ecm™},

CP498, Non-Neutral Plasma Physics 111, cdited by John J. Bollinger, et al.
© 1999 American Institute of Physics 1-56396-913-0/99/$15.00
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and electron temperature T in the range of 0.8 eV. The trap is operated with re-
peated cycles of inject, hold, and dump phases. After a variable ‘hold’ time, the
dump gate potential is pulsed to ground, and the electrons stream out axially along
the magnetic field lines, permitting a measurement of the electron density profile
by the collector assembly [2,3].

In this paper, we summarize recent experimental results on the effects of back-
ground neutral gas on the dynamics of the electron plasma in the EDG device,
including results from the direct measurement of the density profile expansion
(Sec. 1), and the effects of background neutral pressure on the nonlinear dynamics
of the m = 1 diocotron mode (Sec. III).

II PLASMA EXPANSION IN THE EDG DEVICE

In a recent calculation [4,5], assuming elastic collisions between the electrons and
background neutral atoms with collision frequency ven, a macroscopic fluid model
was used to describe the collisional relaxation of a strongly-magnetized (w2, <
w?,) pure electron plasma with isothermal electrons (T' =const.), assuming a long,
axisymmetric plasma column with 8/0z = 0 = 8/90. It was shown [4] that the
electron-neutral collisions cause the electron density profile n(r,z) to relax to a
dynamically-expanding (thermal equilibrium) profile of the form

. ed(r,t) — eg(t) r? Nye?
n(r,t) = n(t)exp{ T Eey (1 + 2kBT)} . (1

In Eq. (1), ¢(r,2) is the electrostatic potential determined self-consistently from
Poisson’s equation, ¢(t) = ¢(r = 0,t) and A(t) = n(r = 0,t) are the on-axis
potential and density, respectively, kp is Boltzmann’s constant, —e is the elec-
tron charge, Ny = 27 fOR’” drrn(r,t) = const. is the line density, and (r?) (t) =
Nitom fOR‘” drrr?n(r,t) is the mean-square radius of the plasma column. In addi-

tion, the mean-square radius (r?) (¢) is predicted to increase due to electron-neutral
collisions according to [4]

d 2NL62 Ven 2kJBT
T ()= (1+W ) (2)

m e wce wce

where w,, = eB/mc is the electron cyclotron frequency.

The remarkably simple form of the classical predictions in Eqs. (1) and (2)
are amenable to direct experimental measurement. In recent experiments on the
EDG device, carried out in a regime where the initial plasma density profile is not
too irregular (e.g., hollow), it was found {2] that the experimental density profiles,
measured in repeated hold-and-dump cycles, fit remarkably well to the expanding
thermal equilibrium shape in Eq. (1), using one adjustable parameter (the electron
temperature) at fixed line density Ny. There are two notable anomalies in the data
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[2], however. First, the measured expansion rate [2], although increasing with back-
ground gas pressure, is anomalously fast in comparison with Eq. (2), due possibly
(in part) to enhanced radial diffusion caused by field asymmetries [6]. Second, the
best-fit values of the clectron temperature (not measured directly) consistent with
Eq. (1) and the measured profile shape for n(r,t) remain relatively constant {2]
(between 0.7 €V and 0.9 €V). This is true even though the relatively large decrease
[2] in electrostatic field energy (1-2 eV per particle) would be expected to result
in a sizeable increase in electron temperature, if the electron-neutral collisions are
elastic and the total plasma energy is conserved [5].

Using the detailed measurements [1] of the electron density profiles n(r,t) in the
EDG device, the mean-square radius, (r?)(¢), and electrostatic field energy per
particle, Wy(t), are calculated from

Ru
(r*) (t) = -1%]1;—/0 drrria(r,t), (3)

2r R 1
Wi(t) = —N—TL/O drr §e¢(r,t) n(r,t), (4)

where Ny = 2w fOR"' drrn(r,t) is the line density, and —e is the electron charge.
Typical results are illustrated in Figs. 1 and 2, which show plots of (r?)(¢) and
Wy (t) versus time ¢ at various background helium gas pressures. Although the
experimental results in Fig. 1 are in qualitative agreement with Eq. (2) (the ex-
pansion is faster at higher background gas pressures), the absolute rate of expansion
in Fig. 1 is much faster than that predicted by Eq. (2) (see also Fig. 3), likely due
to radial transport induced by field asymmetries [6]. As the plasma expands, there
is a correspondingly sizeable decrease in electrostatic field energy W,(t), as evident
from Fig. 2. The plots in Fig. 2 correspond to the mean-square radius evolutions
shown in Fig. 1, and the instantaneous radial density profiles shown in Fig. 2 of
Ref. 2.

If the electron-neutral collisions are elastic and the total plasma energy is con-
served, then the decrease in W;(t) in Fig. 2 would be compensated by a corre-
sponding increase in the plasma kinetic energy (directed rotational energy and/or
electron temperature T'). For the plasma parameters in the EDG device, it is found
[1] that the rotational kinetic energy per unit length is small in comparison with
(3/2)NpkgT. From Fig. 2, setting kg AT = —(2/3)AW; would give electron tem-
perature increases approaching 0.9 eV. As noted earlier, this is inconsistent with the
‘best-fit” temperatures [2] inferred from Eq. (1), and the experimentally-measured
density profiles n(r,t). Indeed, the best-fit values of T show a slight decrease [2] in
electron temperature as the plasma expands, which is also consistent with Eq. (2)
and the (slight) downward concavity of the plots of (r?)(t) versus ¢ in Fig. 1 [5].
A likely cause for energy loss from the plasma is through inelastic collisions with
either the majority background helium atoms or other residual gas atoms present.
The predicted loss of energy by electrons through collisions with the helium atoms
is minimal, with a characteristic energy-loss time of 4(m./M)v,,, where m, is the
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electron mass, M is the mass of a helium atom, and v, is the electron-helium col-
lision frequency. At a pressure of 1 x 1078 Torr, the predicted collision frequency
Ven is approximately 10 sec™!, and the characteristic energy transfer time would be
greater than 102 seconds. Collisions with other trace neutral gas atoms present in
the system, including polyatomic molecules such as Hy, N,, CO, CO,, H,0, etc.,
are much less frequent than collisions with helium atoms, but the energy exchange
can be far greater.

While earlier experiments [6,7] have measured the evolution of the central density
and the total charge trapped over a wide range of background gas pressure P and
magnetic field strength B, these experiments did not give a detailed characterization
of the evolution of the density profile n(r,t) as has been done in the EDG device
(1,2]. Using the experimentally-measured [1,2] density profiles to calculate (r?) (¢)
from Eq. (3), Figs. 3 and 4 show typical experimental results obtained in the
EDG device in which the measured expansion rate, (d/dt) (r?), is plotted versus
background helium gas pressure P (Fig. 3) and magnetic field strength B (Fig. 4).

In Fig. 3, beginning with a base pressure of approximately 3 x 10~1° Torr, purified
helium gas is injected into the EDG device to increase the pressure in controlled
amounts. The measurements in Fig. 3 are performed at a constant plasma line
density Ny = 4.0 x 10" cm™!, magnetic field B = 610 G, and temperaturc T =
1 eV. If the cause of the plasma expansion were primarily due to electron-neutral
collisions, the expansion rate would be expected to scale linearly with pressure, and
the data shown in Fig. 3 would exhibit a decade increase in expansion rate per
decade increase in pressure. This is clearly not the case. Instead, the expansion rate
reaches a saturation level at pressures below 108 Torr and does not continue to
decrease at lower pressures. The cause of the saturation is likely due to asymmetry-
induced radial transport [6], which is independent of background gas pressure.

The solid curves shown in Fig. 3 give the expansion rate predicted by Eq. (2),
where a constant offset has bcen added to the prediction to account for transport
caused by factors independent of background gas pressure (e.g. asymmetry-induced
transport). The lower curve gives the predicted expansion rate with no adjustable
parameters other than the constant offset. The upper curve is a best-fit line allowing
an adjustable multiplying factor to the predicted expansion rate of Eq. (2). The
best-fit multiplying factor of 4.2 could be explained by uncertainties in the measured
background pressure, and the related uncertainties in the electron-neutral collision
frequency Ve,.

The data in Fig. 3 are obtained at a constant magnetic field of 610 G. Varying
the magnetic field will also change the expansion rates according to Eq. (2), with
the expansion rate scaling as B~2.. Again, this assumes that the expansion is caused
by electron-neutral collisions. In Fig. 4, the expansion rate is plotted as a function
of the magnetic field strength, for five diflerent combinations of the background gas
pressure and the plasma line density. The background gas pressure ranges from
5% 107° to 5 x 1078 Torr, and the line density ranges from 2 x 107 to 4 x 107 em™!.
The solid lines plotted are proportional to B=/2. For this range of experimental
parameters, the scaling of the expansion rates is closer to B~%/2, rather than the
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FIGURE 3. The measured plasma expansion rates (d (r?) /dt) are plotted versus background
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a constant offset in the expansion rates has been added.

B~? scaling predicted by Eq. (2).

This discrepancy in the scaling rate with magnetic field may be due to the same
anomalous factors that contribute to the plasma expansion rate. One possible factor
mentioned previously is asymmetric errors in the confining fields. This effect has
been studied [8] by applying a potential to an asymmetric patch in the trap wall.
Since the trap asymmetry is large, it may be assumed to be the dominant cause
of plasma expansion. Under these conditions, the plasma expansion rate is found
[8] to scale as B™°%. A combination of asymmetric fields and electron-neutral
collisions might lead to the scaling observed in EDG.

III DYNAMICS OF THE m =1 DIOCOTRON MODE

The m = 1 diocotron mode [9-12] can be detected through the image charge
induced in the trap walls. In the EDG device [1-3], one section of the colinear
cylinders is divided axially into two half-cylinders. As the mode propagates az-
imuthally, the image charges also propagate azimuthally, causing an electron cur-
rent to flow across the half-cylinders. In principal, any odd-numbered diocotron
mode (m = 1,3,...) can be measured, but in the experiments described here, only
the m = 1 mode has been observed. The image currents are measured by adding
an impedance between the sector probe and ground [1], resulting in a measurable
voltage.
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FIGURE 4. The measured expansion rate of the mean-square radius (d (r?) /dt) is shown as
a function of the magnetic field strength B. Five different experimental conditions are plotted

corresponding to pressures from 5 x 107% to 5 x 10~8 Torr and line densities from 2 x 107 to
4 %107 em~1.

A Resistive-Wall Instability

One of the strongest factors affecting the stability of the m = 1 diocotron mode
in a Malmberg-Penning trap with a monotonically decreasing density profile is
resistive-wall destabilization [13]. Physically, a resistive wall dissipates energy, and
because the m = 1 mode is a negative-energy mode, the mode amplitude and the
displacement of the column from the cylinder axis grows with characteristic growth

rate [13]
1L , . ,(Ad R
TR= g sin (7) (““—*1 +(ch~)z)- (5)

In the EDG device, the isolated sectors have axial length L, = 5.08 cm and az-
imuthal span A8 = 7. In Fig. 5, the resistively destabilized m = 1 diocotron mode
amplitude D/R,, is plotted as a function of time. A resistance R of 3.1 k(2 is at-
tached to the trap wall at the sector opposite to the sector probe, and the mode
frequency is w/2n = 38.1 kHz. The mode exhibits an exponential rate of increase
(note the log-linear scale) until saturation occurs at 0.10 seconds. The saturation is
believed to be due to contact with the trap wall, and is accompanied by a decrease
in the plasma line density. The initial amplitude of D/R,, ~ 0.02 corresponds to a
displacement of 0.05 cm, while the saturation amplitude corresponds to 1.25 cm.
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The m = 1 diocotron mode growth rates have been measured for a wide range of
resistances, and are shown in Fig. 6. These growth rates are measured while keeping
a constant diocotron frequency w/2r = 38.0 kHz, plasma length L, = 15.0 cm, and
capacitance C' = 200 pF (= 180 cm in cgs units). The theoretical growth rate given
by Eq. (5) is also plotted in Fig. 6. For low resistances with wRC <« 1, Eq. (5)
increases linearly with the resistance R. At wRC = 1 there is a roll-over in the
predicted growth rates, and for wRC > 1, Eq. (5) decreases as R™.

It is clear from Fig. 6 that measured growth rates are in excellent agreement with
the theoretical predictions for all resistances between 17 Q2 and 10° €, representing
2.5 orders-of-magnitude in growth rate. These measurements not only reproduce
previously published data [13], but extend the data to both a lower and a higher
range of resistances, and to smaller growth rates. The same level of agreement
between the experimental data and theoretical predictions is found over the range
of 10?2 © to 10° ) examined previously [13]. Beyond this range, the measured
growth rates are somewhat larger than the predictions, especially at resistances
greater than 10¢ 2. The cause of the discrepancy at large resistances is not known.
Previous measurements using a potentiometer to vary the resistance resulted in
even greater discrepancies, so non-ideal effects of the resistors are a possibility. For
example, the resistors may have an inherent inductance.

B Effects of Background Neutral Pressure on the
Nonlinear Evolution of the m =1 Diocotron Mode

We now consider the effects of collisions with background gas atoms on the dy-
namics of the m = 1 diocotron modc. A recent calculation [14] predicted that elastic
collisions between electrons and background neutrals can induce an instability in
the (negative energy) m = 1 diocotron mode, with characteristic linear growth rate
Y = VenWeo /Wee Where v, is the electron-neutral collision frequency, w.. = eB/m.c
is the electron gyrofrequency, and we, = 2ecNL/R?% B is the diocotron frequency for
an infinite-length plasma column. The calculation [14] assumed that the expansion
of the plasma is sufficiently slow that the radial density profile can be regarded as
stationary on the time scale of the instability. In the experiments on the EDG de-
vice, however, the expansion rate is observed to be faster than that expected due to
electron-neutral collisions alone [2,3], and also faster than the predicted characteris-
tic exponentiation time of the instability. Although providing initial motivation for
the expansion measurements, this theoretical model [14] is not expected to predict
correctly the behavior of the diocotron mode in the EDG device.

The effects of electron-neutral collisions on the m = 1 diocotron mode evolution
are studied in the EDG device by injecting purified helium gas into the vacuum
vessel while monitoring the evolution of the m = 1 diocotron mode. The amplitude
evolution for 11 different background gas pressures is shown in Fig. 7, for a con-
stant magnetic field strength of 612 G, and diocotron mode frequency of 55 kHz.
The solid and dotted lines are used to distinguish between pressures, and at each
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pressure 5 measurements of the mode evolution are shown. The amplitudes plotted
are normalized to the initial amplitude for clarity. The frequencies are constant
as a function of time (to within 1%) even as the mode amplitude decays to zero,
indicating that no charge is lost during the measured evolution.

From Fig. 7, a non-exponential damping of the m = 1 diocotron mode is observed,
which becomes stronger as the background neutral pressure is increased. The solid
lines labeled “a” show the amplitude evolution at the base pressure of 5x107!° Torr.
A slight increase in the mode amplitude is evident initially, possibly due to a small
wall resistance, with an equivalent exponential growth rate of less than 0.1 sec™.
The “dotted” lines labeled “b” show the amplitude evolution after helium has been
injected to increase the measured pressure to 6 x 107! Torr (N, equivalent), a
difference of only 1 x 107!° Torr from the base pressure. At this pressure, the
diocotron mode evolution is measurably different, with good reproducibility, and
with the amplitude decaying to nearly zero by 10 seconds. As the background gas
pressure is increased further, the diocotron mode damping rate becomes greater.

The sensitivity of the diocotron mode evolution to changes in the background
gas pressure of as little as 1 x 107'% Torr is somewhat surprising in view of the ex-
pansion data in Sec. I, where it appears that for pressures lower than 1 x 10~® Torr
the plasma expansion rate is independent of pressure. However, the data in Fig. 3
required many hundreds of repeated plasma shots to obtain each data point, and
variations in the experimental parameters over the long times necessary to obtain
the data obscure the expansion rate dependence on the background gas pressure
at very low pressures. By contrast, the evolution of the diocotron mode can be
measured in a single plasma shot, and therefore, small changes in the background
gas pressure can be more readily measured while keeping other experimental pa-
rameters constant.

To conveniently characterize the non-exponential damping shown in Fig. 7, the
time 7 for the mode amplitude to decay to one-half of its initial amplitude is
plotted as a function of the background gas pressure P in Fig. 8. Also shown
is the time for the amplitude to decay to one-tenth of its initial amplitude. A
power law fit is performed on both sets of data which indicates that the time 7 is
approximately proportional to P~'/2, The non-cxponential rate of damping and the
P~'/2 scaling of T are not yet understood. The non-exponential rate of damping
could be explained if the damping were due to plasma proximity with the trap
walls. The amplitude evolution would then be expected to look similar to those in
Fig. 7, with very little decay initially because the plasma is far from the trap walls,
and more rapid decay later in time as the plasma expansion brings the plasma
closer to the trap walls. However, since the plasma is expected to expand at a rate
proportional to the background gas pressure P, the time for the mode to damp
would be expected to be proportional to P~!. To investigate the cause of the mode
damping further, more experiments are needed which measure the density profile
evolution during the mode damping.

In any case, from Figs. 7 and 8, the strong sensitivity of the evolution of the
m = 1 diocotron mode to the background neutral gas pressure has been clearly



demonstrated in the EDG device.

IV CONCLUSIONS

In this paper, we have described the effects of background neutral gas on the
plasma dynamics in the EDG device. The results presented in Sec. II, based on
direct measurements of the expanding density profile n(r,t), described how the
plasma expansion rate scaled with background gas pressure P (Fig. 3) and magnetic
field strength B (Fig. 4). In Sec. II1, it was shown that the evolution of the m =1
diocotron mode exhibits a strong sensitivity to the background gas pressure P
(Fig. 7), and that the time scale for damping of the diocotron mode scales as p-i/?

(Fig. 8).
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An Annular Penning Trap for Studies
of Plasma Confinement
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Abstract. An annular version of the Malmberg-Penning trap is described in which electrons are
confined between concentric cylinders. The space within the inner cylinder contains conductors
for adding an azimuthal magnetic field and a solenoid for inducing an azimuthal electric field.
Experiments with potential differences from 0 to 90 volts applied to the cylinders show that the
mobility transport may be varied or made smaller than the diffusive transport. The mobility
transport is shown to be independent of the azimuthal magnetic field. The diffusive transport is
shown to scale linearly with pressure and inversely as the square of the axial field. The
azimuthal electric field made by changing the magnetic flux in the solenoid results in a radial
displacement of the electrons such that they remain on surfaces enclosing constant flux.

INTRODUCTION

An annular Malmberg-Penning trap (1) is described in which a nonneutral
plasma of electrons is confined between concentric cylinders. This geometry makes
possible several new types of confinement experiments. First, the bias potentials on
the inner and outer cylinders may be used to adjust the radial electric field, whereas in
the standard trap the radial electric field is determined by the electron density. This
feature allows the transport by mobility to be varied or to be made smaller than the
transport from diffusion. Second, conductors may be placed within the inner cylinder
to create an azimuthal magnetic field. The combined axial and azimuthal fields result
in helical field lines and helical bounce orbits. There is an additional electric drift in
the end regions which is radially outward at one end of the device and inward at the
other. These drifts give the bounce orbits a finite width which is analogous to the
banana width of orbits of the tokamak and the particle transport is analogous to the
neoclassical transport of the tokamak (2). Third, a solenoid may be placed within the
inner cylinder and the flux within it changed to create an azimuthal electric field. The
resulting E x B drift results in a radial displacement of particles which may be studied
or used to create initial plasma profiles which are separated from the wall.

CP498, Non-Neutral Plasma Physics 11, edited by John J. Bollinger, et al.
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THE APPARATUS

The device is shown schematically in Fig. 1. The confinement volume is the
annular space between two concentric cylinders of equal length. An axial magnetic
field is applied by Helmholtz coils. Annular grids at the ends of the cylinders are
biased negatively for electrostatic confinement. Current in conductors along the axis
creates an additional azimuthal field. The field lines are then helical and the flux
surfaces are cylinders. The azimuthal field has a radial gradient and there are
additional gradient and inertial drifts which are both axial and azimuthal. In the end
regions where there is a strong axial electric field, there is a drift from E, x B which
is radial. This drift is inward at one end of the device and outward at the other end
because E, changes sign at the midplane. The drift displacement is the same at each
end thus the orbits have a finite width when projected onto either the r-z plane or the
1-0 plane. These orbits are illustrated by the numerical simulations in Fig. 2.

Construction details of the trap have appeared previously (3) and are briefly
summarized here. The device is contained in a standard 15 cm diameter pipe cross
pumped by a turbomolecular pump to a base pressure of <107 Torr. Helium may be
added by means of a leak valve. The inner and outer cylinders of the trap have
diameters of 25.4 and 48 mm. Their ends are at z = + 75 mm and the negatively
biased grids are at + 87 mm. An axial field of 0-18 mT is made by water-cooled
Helmbholtz coils and an azimuthal field of 0-15 mT is made by a set of six rectangular
coils fabricated from solid copper rod. These pass within an inner vacuum wall which
has a radius of 38 mm. A pulsed azimuthal electric field is created by a solenoid
within the inner wall. This solenoid has 220 turns with a winding radius of 17 mm
and a length of 25 cm. It is operated from a supply which generates rectangular pulses
of 0-100 V and 0-100 A. The current rises to a relatively constant value in 0.5 ms
which is the L/R time of the coil and the duration of the azimuthal electric field.

The density profile may be measured by dumping the electrons onto a set of
five annular electrodes of equal width which are connected to integrators. Electrons
are dumped by removing the bias potential from the grid at +87 mm. Electrostatic
pickup from the gate pulse is reduced by having a grounded grid between the gated
grid and the annuli. The remaining pickup is subtracted using signals recorded with
no electrons in the trap. The inner and outer cylinders are connected to amplifiers
which measure the collected current. Bias potentials are applied to the cylinders by
means of batteries in series with the inputs of these amplifiers.

The trapped electrons are secondaries created by passing energetic electrons
through the trap. The characteristic energy of secondary electrons from helium is 15
eV (4). The energetic electrons are from a heated tungsten filament which is biased to
—150 V. The filling is stopped by removing the bias potential from the filament. There
is an upper bound to the density determined by the depth of the potential well. Near
the density limit, oscillatory signals are seen which may indicate the onset of
diocotron modes (5). In the experiments reported below, the density is kept below this
limit.
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FIGURE 1. Schematic diagram of the annular trap showing the concentric cylinders, end grids, a
particle orbit projected onto the r-z plane, the annuli for collecting dumped electrons, the conductors
near the axis for creating an azimuthal magnetic field, the solenoid for creating an azimuthal electric
field, and the filament for creating trapped electrons by impact ionization of helium.
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FIGURE 2. Simulated particle trajectories in the annular trap. The plot is made in a frame rotating with
the local E x B drift velocity. The orbit fails to close because of the azimuthal gradient and inertial
drifts. The plot is for an energy of 6 eV (2 eV in each degree of freedom), an axial field of 2 mT and an
azimuthal field of 2 mT. The fields are artificially low to make the orbit scale lengths visible.



EXPERIMENTS

Mobility driven by an applied electric field

Mobility transport in the trap is most easily derived from conservation of the
azimuthal canonical angular momentum,

Po=r(qde+mvp), ey

where r is the radial coordinate, 4o = %2 B, r is the vector potential for a uniform axial
field B,, and q and m are the charge and mass of an electron, respectively. Collisions
with neutrals cause a loss of Pg at the average rate rvmve where v is the momentum
transfer collision frequency and ve is the azimuthal drift speed E, /B,. The electron
Larmor radius is small in comparison with the radius of the device thus the
mechanical angular momentum, rmve, is much smaller than the electromagnetic
momentum rqde. This implies that a loss of angular momentum must come from the
electromagnetic part of Po which results in a radial drift velocity,

vp=dr/dt=va,/quz=uEr, )

where v, is the mobility drift velocity and p = vm /qu2 is the mobility coefficient. A
mobility confinement time, T,, may be defined as the half-width of the plasma
annulus, a, divided by the mobility drift velocity,

1, =aqB;?/vmE,. ?3)

Thus we expect the confinement time to scale inversely with the applied electric field.

The mobility transport was varied by grounding the inner cylinder, biasing the
end grids to —6 V and increasing the voltage on the outer cylinder in steps of 9 V
from 27 V to 90 V. The decay in the current to the outer cylinder was recorded, Fig.
3a, after the filling was stopped. The axial field was 14 mT and the helium pressure
was 5 x 10~ Torr. The data were fit to an exponential curve and the e-folding times
were found. The loss rates, Fig. 3b, show the expected linear scaling of the loss rate
with electric field. Other data have shown that the e-folding times scale as the square
of the magnetic field and scale inversely with the pressure (5).

The integrated current to the outer cylinder gives an initial charge of 145 pC.
This divided by the volume of the trap gives a confined density of 1.2 x 10% cm?.
This density is about a factor of four below the density which would give a potential
drop which matches the 36 V applied between the inner and outer cylinders.
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Mobility with an azimuthal magnetic field

The azimuthal field adds to the absolute value of the field and one might
expect that the mobility with the combined fields would be p = vm/qB]>. The
derivation of p in the preceding section, however, shows that By does not enter. The
correct expression can be referred to as the neoclassical mobility because it applies to
axisymmetric systems like the tokamak with drifts orthogonal to flux surfaces. In the
experiment, the mobility was shown to be independent of the azimuthal field by
recording the current to the outer cylinder with the axial field fixed at 5 mT and the
azimuthal field increased in steps from 0 to 15 mT. The absolute value of the field
was increased by more than a factor of three, but the decay rates, Fig. 4, are nearly
indistinguishable, indicating that the mobility is independent of By.
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a) b)
FIGURE 3. a) The current to the outer cylinder as a function of time for bias voltages of 27, 36, 45, 63
and 90 volts. The higher bias voltage results in the shortest decay time. For clarity, data sets at
intermediate voltages werc not plotted. b) The decay constant, 1/t, as a function of cylinder bias

potential. The data show that the loss rate scales linearly with the potential difference applied to the
cylinders. The line is a linear regression.
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FIGURE 4. Four superimposed traces of current to the outer cylinder as a function of time with B, = 5
mT and with B = 0, 5, 10, and 15 mT. The decay is independent of the azimuthal field. The potential
applied to the outer cylinder is 36 V and the helium pressure is 1 x 10 Torr.



Confinement limited by diffusion

Transport by mobility may be nearly eliminated by placing both cylinders at
ground potential. There will remain some mobility transport driven by the space
charge electric field but this can be kept negligible by limiting the density. The
classical diffusion coefficient is D = Y% . v, where 1y is the thermal Larmor radius.
The confinement time determined by diffusion is approximately

w=d*/Dz=d* B2/ vm T, @

where T is the electron temperature in energy units. The ratio of the diffusive time
scale to the mobility time scale is

W/t = 2qaE /T=|qU/T, &)

where U = —2aFE, is the potential difference between the cylinders. Thus if the
potential difference is much smaller than the mean electron energy the transport is
dominated by diffusion rather than mobility.

Diffusive transport was examined experimentally by placing both cylinders at
ground potential and biasing the grids to —30 V. The decay in density was measured
by dumping the electrons onto the annuli with delay times that were successively
longer, Fig. 5. For this measurement, the charge deposited on two annuli near the
center was used. The decay rates are plotted in Fig. 6a as a function of pressure at 18
mT. The data show the expected linear dependence upon collision frequency,
however, the linear regression does not pass through the origin which indicates an
additional loss mechanism. The decay time plotted as a function of the square of the
magnetic field, Fig. 6b, shows the expected linear dependence.

Charge [10°7 €]
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FIGURE 5. Example of the diffusive mode of operation. Displayed is the output of an integrator
connected to two annuli midway between the cylindrical walls. Ten traces are superposed and each is
made with a longer hold time. The magnetic field is 14 mT and the pressure is 3 x 10 Torr. The
vertical scale is the charge indicated by the peak of the signal.
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FIGURE 6. a) The decay rate, 1/, plotted as a function of pressure shows that the diffusivity increases
linearly with collision frequency. b) The decay time, T, plotted as a function of the square of the
magnetic field shows the expected linear scaling. The pressure is 2 x 107 Torr.

The e-folding times calculated from equation (4) using the characteristic
energy of secondaries, 15 eV, is approximately a factor of two longer than the
measured value. This discrepancy maybe due to the electron distribution falling more
slowly with energy than a Maxwellian distribution. The charge dumped onto the
annuli corresponds to a density of approximately 3 x 10° cm™. This density gives a
space charge potential of less than one volt thus transport by mobility is negligible.

Displacement by an azimuthal electric field

The drift rate caused by application of E may be found from conservation of
canonical angular momentum. The magnetic vector potential may be divided into two
parts, Ago = 21B, which arises from the uniform axial confining field B,, and Ag, =
P (rsz/r)BS which arises from the field B, within the solenoid. The solenoid has radius
1o <r thus at the particle’s location the solenoid current changes Ay and B, changes
negligibly. Angular momentum conservation requires that

Po=r{mve+%q[rB,+(r /1) B ]} (6)

be constant. One may average over the rapid cyclotron motion of the particle in which
case 1 becomes the guiding center location and ve becomes the azimuthal component
of the guiding center velocity. The mechanical momentum rmvg is much smaller than
the electromagnetic part of the momentum, rqAe, thus conservation of Py is
equivalent to rAe remaining constant at the particle's location. For axisymmetric
systems, the flux, y(r), enclosed at a radius r is related to the vector potential through
Ag = y(r) /2mr, thus conservation of rAg is equivalent to the particle guiding center
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remaining on a surface enclosing a constant flux. Conservation of enclosed flux gives
a displacement that satisfies

l'f2 = l’i2 -AY/ 7IB,-_ . (7)

where 1t is the final radial position of the particle, r; is the initial position and AY =
nr 2B is the flux change.

The displacement was measured by loading the trap, increasing the current in
the solenoid from zero to a fixed value, and then dumping the electrons onto the
annuli. This was repeated with increasing values of the current. The polarity of the
current was chosen to decrease the net flux which results in an outward displacement.
The data in Fig. 7 show that the density profile is displaced to larger radii as the
current is increased. The line in the figure shows the boundary calculated from
equation (7). The boundary should pass the first annulus at 18 A and the last at 54 A
There is agreement between the expected and calculated values. Similar results are
obtained when the polarity of the solenoid is reversed so that the outer boundary of
the plasma is displaced inward.

Outer W :

Current [A} 3

FIGURE 7. The four pedestals indicate the charge in arbitrary units dumped onto four annuli spanning
30 mm to 48 mm in radius. The current is that in the solenoid at the time of the dump. The pedestals of
zero height indicate that the plasma boundary has moved past that annulus. The inner annulus is in the

foreground and the outer is in the background. The white line is the inner plasma boundary expected
from conservation of enclosed flux.

297



SUMMARY AND CONCLUSION

A new version of the Malmberg-Penning trap has been constructed in which
the plasma is contained between concentric cylinders. The potential difference
between the cylinders has been varied to demonstrate scaling of mobility transport
with electric field. The space interior to the inner cylinder contains conductors for
creating an azimuthal magnetic field and a solenoid for changing the azimuthal vector
potential without altering the magnetic field within the plasma volume. Experiments
with the solenoid have shown that the drift from the induced azimuthal electric field
results in a displacement such that the electrons remain on surfaces enclosing constant
flux. The azimuthal magnetic field allows experimental tests of several aspects of
neoclassical transport theory. The first such experiment has shown that the mobility is
independent of the azimuthal field. Other experiments which should be possible
include the demonstration of the Ware drift (6), neoclassical diffusion, and the
transition from neoclassical to classical diffusion as the collision time is made shorter
than the axial bounce time (2).
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Bifurcations in elliptical, asymmetric
non-neutral plasmas
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Abstract. Pure electron plasma deform into ellipses when subjected to stationary,
¢ = 2 potential perturbation on the trap wall. At first, the plasma’s ellipticity is
proportional to the strength of the potential perturbation. Once the perturbation is
increased beyond a critical value, the plasma equilibrium bifurcates into two off-axis
equilibria and a saddle. At the bifurcation point, the diocotron frequency dips to
near zero. The diocotron orbits become very elliptical just below the bifurcation, and,
after the bifurcation, split into three classes delimited by a separatrix: two classes
surrounding the individual new equilibria, and one class surrounding both equilibria.
The mode frequencies slow near the separatrix, and the trajectories themselves slow
near the saddle at the origin. Interaction with the elliptical mode causes the diocotron
mode to spontaneously and reversibly jump across the separatrix.

When a pure-electron plasma confined in a Malmberg-Penning trap is subjected
to a V cos 26-like voltage perturbation along the trap wall, it deforms into an ellipse.
The voltages are applied to electrically-isolated sectors in the trap wall. The plasma
is stable, stationary in the lab frame and reasonably long-lived. Curiously, negative
voltages attract the plasma, while positive voltages repel the plasma. Thus, in the
above figure the plasma is squeezed away from the 417V applied to the left and
right sectors.

Some years ago, we studied the effects of small perturbations [1,2]. Recently we
extended the analysis to highly deformed plasmas {3,4]. The analysis predicts that
as the perturbation V is increased, the plasma will become more elliptical. When
V exceeds a critical voltage, the plasma equilibrium will bifurcate, and the plasma
will move off center. This classic pitchfork bifurcation (5] is illustrated in Fig. 3.

Trap construction asymmetries favor one of the post bifurcation equilibria over
the other, but the effect of these asymmetries can be tuned out by applying a small
voltage to the top or bottom sectors or by making the left and right sector voltages
slightly different. We chose to tune by applying a voltage V, = BV to the bottom

1) joel@physics.berkeley.edu
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FIGURE 1. Pure electron plasma deformed into an ellipse by the application of +17V to the
side sectors. The —0.046 V applied to the bottom sector is a balancing voltage, described later in
the poster.
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FIGURE 2. Schematic of the trap showing the electrically isolated sectors.

sector. Typically the balance proportionality |J| is less than 0.005. The tuning can
be quite sharp; changing (3 by less than 0.0015 will consistently send the plasma
up or down. For example, in Fig. 3, changing £ from —0.0027 to —0.0031 changed
the selected equilibrium. Over the course of a few days, however, the equilibrium
[ can drift.

The plasma’s center of charge is plotted as a function of the perturbation voltage
in Fig. 4; the ellipticity is plotted in the succeeding figure.  The theory curves
in both graphs are derived from a second-moment Hamiltonian model given by
Chu {2,4], with an added magnetron term. Unfortunately, Chu’s equations are for
flat-top, infinite-length plasmas, and the experimental plasmas are neither. Conse-
quently we fit the critical voltage and the initial slope of the ellipticity curve to get
the theory curves shown. The discrepancy in the ellipticity curve for large voltages
is probably due to higher order moments. Such moments are increasingly impor-
tant as the plasma approaches the wall, as is clearly visible for the V = 28.3V
plasmas in Fig. 3.

An important prediction of the theory is that the diocotron frequency goes to
zero at the bifurcation. The £ = 1 diocotron mode is driven by the plasma image
charge fields, but, at the bifurcation, these fields are canceled by the fields from
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FIGURE 3. Ellipse bifurcation.
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FIGURE 4. Measured (triangles) and predicted (line) center of charge (normalized by the wall

radius) of the ellipse as a function of the perturbation voltage. The bifurcation occurs at 17.67 V.
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FIGURE 5. Measured (dots) and predicted (line) ellipticity as a function of the perturbation
voltage.

the perturbation voltage. Consequently the diocotron stalls. Theoretically, the
small-amplitude diocotron frequency should be

f = ft=-V/V, V<V, 1)
2fo (VIV 21 -V, v V>V,

where f is the unperturbed diocotron frequency. As shown in Fig. 6, this prediction
is well verified by our experiments. However, the experimental diocotron frequency
does not go precisely to zero at the bifurcation, as it is predicted to by Eq. (1).
The minimum frequency is a sharp function of the balance proportionality (see
Fig. 7.) When detuned, nonlinearities dropped in the analysis leading to Eq. (1)
keep the diocotron frequency finite (sec Fig. 7). The effects of nonlinearities are
magnified by the shape of the diocotron orbits near the bifurcation, which, as shown
in Fig. 8, becomes extremely elliptical. Even low amplitude orbits sample the field
nonlinearities found away from the origin.

As shown in Fig. 9, the post bifurcation diocotron orbits exhibit all the phase-
space features associated with a 2-D bifurcation [6]:

Classically, the separatrix between the tear-drop and peanut orbits is inviolable.
We find, however, that if we drive the diocotron mode too close to the separatrix,
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FIGURE 6. Diocotron frequency as a function of the perturbation voltage. The measured
values fo = 47.6kHz and V. = 17.67V are used to calculate the theory line.
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FIGURE 7. Minimum diocotron frequency as a function of the balance proportionality 8. (The
best B, +0.005, has drifted from the 8 observed in Fig. 3).
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FIGURE 8. Diocotron orbits just below bifurcation. Proceeding outwards, the orbit frequencies
are 4, 8, 16 and 16 kHz. The ellipticity of the 4 kHz orbit is almost 28.

the plasma can spontaneously jump between the three orbit groups. The jumps
are not repeatable, and occur at random intervals. All the tear-drop orbits in the
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+19V

+19V

FIGURE 9. Diocotron orbits above bifurcation showing tear-drop shaped orbits around the two
equilibria (marked by +’s) and peanut shaped orbits surrounding both equilibria. The signal on
the bottom sector, V}, is tuned to select the upper or lower equilibria. The origin is a saddle,
and the separatrix is somewhere between the 25kHz and 16 kHz orbits. Note how the orbital
frequencies decrease ncar the separatrix. The circles denote 1 us intervals along the orbit. For
clarity, the hash marks are suppressed on the upper half of the 16 kHz orbit, the lower 25 kHz
orbit, and on both the 38 kHz orbits.

sequence have roughly the same frequency, implying that the tear-drop orbit am-
plitudes do not change. The peanut orbit frequencies are approximately half the
tear-drop orbit frequencies. The jumps can continue for over fifty milliseconds,

T T
11kHz

T R
Peanut BHz

Upper
tear-drop

23 kHz
Lower
tear-drop

Signal (a.u.)

0 2(‘)0 4’00 6(‘)0 8(‘)0 1000
Time (pus)

FIGURE 10. Signal induced on the upper sector by the plasma charge. The magnitude and sign

of the signal depends on the position of the plasma, with large negative-going signals indicating

that the plasma is close to the upper sector, and smaller positive-going signals indicating that the

plasma is far from the upper sector.

making many transitions therein, so dissipation does not seem to be the cause of
this phenomenon. We suspect that the jumps are duc to an exchange of energy
between the diocotron mode and the elliptical mode; strictly speaking, the separa-
trix only exists for the two dimensional (z., y.) system, not for the full (z.,ye, A, @)
system. Previous experiments on adiabatic invariants [7] two-vortex stability [8]
and on autoresonance [9] have demonstrated that the diocotron mode is very well
decoupled from the elliptical mode. Effectively irreversible interactions [10] have
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been observed between the diocotron and elliptical modes, but this may be the first
time that any reversible coupling has been observed.

We thank J.S. Wurtele for his help with this problem. This work was supported
by the Office of Naval Research.
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SECTION 5

CHARGED PARTICLE BEAMS




Intense Nonneutral Beam Propagation
Through a Periodic Focusing Quadrupole
Field I — A Compact Paul Trap
Configuration to Simulate Beam
Propagation Over Large Distances

Ronald C. Davidson, Hong Qin, and Gennady Shvets

Plasma Physics Laboratory
Princeton University, Princeton, New Jersey 08543

Abstract. This paper considers an intense nonneutral charged particle beam propa-
gating in the z-direction through a periodic focusing quadrupole magnetic field with
transverse focusing force, —#g4(s)[zé; — y&,], on the beam particles. Here, s = fuct
is the axial coordinate, (7, — 1)mpc? is the directed axial kinetic energy of the beam
particles, g, and m, are the charge and rest mass, respectively, of a beam particle, and
the oscillatory lattice coefficient satisfies kq4(s + S) = k4(s), where S is the axial peri-
odicity length of the focusing field. The particle motion in the beam frame is assumed
to be nonrelativistic, and the Vlasov-Maxwell equations are employed to describe the
collisionless nonlinear evolution of the distribution function fs(z,y,’,y’,s) and the
(normalized) self-field potential 9 (z,y,s) = gvé(z,y,s)/¥emsBZc? in the transverse
laboratory-frame phase space (x,y,z’,y'), assuming a thin beam with characteristic
radius rp € S. It is shown that collective processes and the nonlinear transverse
beam dynamics can be fully simulated in a compact Paul trap configuration in which
a long nonneutral plasma column (L > r,) is confined axially by applied dc volt-
ages V = const. on end cylinders at z = %I, and transverse confinement in the
z — y plane is provided by segmented cylindrical electrodes (at radius r,) with ap-
plied oscillatory voltages £Vg(t) over 90° segments. Here, Vo(t + T) = Vo(t), where
T = const. is the oscillation period, and the oscillatory quadrupole focusing force on a
particle with charge ¢ and mass m near the cylinder axis is —m&4(t){zé; — yé,], where
Kq(t) = 8¢Vo(t)/mmr?,. This configuration offers the possibility of simulating intense

beam propagation over large distances in a compact configuration which is stationary
in the laboratory frame.

I INTRODUCTION

Periodic focusing accelerators and transport systems [1-6] have a wide range of
applications ranging from basic scientific research, to applications such as heavy
ion fusion, spallation neutron sources, and nuclear waste treatment, to mention a

CP498, Non-Neutral Plasma Physics III, edited by John J. Bollinger, et al.
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few examples. Of particular interest, at the high beam currents and charge den-
sities of practical interest, are the combined effects of the applied focusing field
and the intense self fields produced by the beam space charge and current on de-
termining detailed equilibrium, stability, and transport properties [1]. Through
analytical studies based on the nonlinear Vlasov-Maxwell equations, and numeri-
cal simulations using particle-in-cell models and nonlinear perturbative simulation
techniques, considerable progress has been made in developing an improved un-
derstanding of the collective processes and nonlinear beam dynamics character-
istic of high-intensity beam propagation [7-24] in periodic focusing and uniform
focusing transport systems. Nonetheless, it remains important to develop an im-
proved basic understanding of the nonlinear dynamics and collective processes in
periodically-focused intense charged particle beams, with the goal of identifying
operating regimes for stable (quiescent) beam propagation over large distances,
including a minimum degradation of beam quality and luminosity.

In this paper, we present in Sec. II a brief summary of the nonlinear Vlasov-
Maxwell equations describing the collective processes and nonlinear transverse dy-
namics of a thin (r, <« §), intense charged particle beam propagating through a
periodic focusing quadrupole magnetic field with axial periodicity length S = const.
In Sec. III, a compact Paul trap configuration is described which fully simulates
the equivalent collective processes and nonlinear {ransverse beam dynamics in a
periodic focusing quadrupole transport system. Unlike a Malmberg-Penning trap
[25-28], which provides transverse confinement of the plasma particles by an ap-
plied axial magnetic field Byé., a Paul trap configuration [29,30] provides transverse
confinement in the z —y plane by oscillating voltages applied to electrodes external
to the plasma. The idea of using a single-species trap to model periodically-focused
beam propagation has previously been discussed by Okamoto and Tanaka [31]. The
emphasis of their work is on solenoidal confinement [31], whereas the present anal-
ysis focuses on periodic quadrupole confinement. In addition, the present analysis
treats the case of arbitrary (but periodic) time dependence of the focusing potential.

To briefly summarize, a long nonneutral plasma column (L > rp) is confined
axially by applied dc voltages V = const. on end cylinders at z = +L, and trans-
verse confinement in the 2 —y plane is provided by segmented cylindrical electrodes
(at radius r,) with applied oscillatory voltages +V(t) over 90° segments. Here,
Vo(t + T) = Vo(t), where T = const. is the oscillation period, and the oscillatory
quadrupole focusing force on a particle with charge ¢ and mass m near the cylinder
axis is —me,(t)[zé, — y&,], where k,(t) = 8¢Vo(t)/mmr?. This configuration offers
the possibility of simulating intense beam propagation over large distances in a
compacl configuration which is stationary in the laboratory frame.

This is the first of a two-paper sequence. The second paper [32] applies a recently-
developed canonical transformation and Hamiltonian averaging formalism (23] to
transform away the rapidly oscillating quadrupole focusing contributions to the
laboratory-frame Harpiltonian H,(z,y,%,9,t). The analysis leads to a new Hamil-

tonian 'HL(X’,Y/,}:’,Y,i) in the ‘slow’ transformed variables (X,f/,):',f/) The
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transformed Hamiltonian has constant transverse focusing coefficient x, = const.
(independent of t), and the corresponding transverse focusing force is isotropic in
the X — Y plane. This leads to enormous simplification in the analysis of the non-

linear Vlasov-Poisson equations for the distribution function F( X,Y,X,Y,t) and
self-field electrostatic potential ¢;(X,Y,t) in the transformed vana,bles

II THEORETICAL MODEL FOR INTENSE BEAM
PROPAGATION THROUGH A PERIODIC
FOCUSING QUADRUPOLE FIELD

We consider a thin, intense charged particle beam with characteristic radius r,
and average axial momentum 7,mBsc propagating in the z-direction through a
periodic focusing quadrupole magnetic field with axial periodicity length S. Here,
s > S is assumed, (75 — 1)myc? is the directed axial kinetic energy of the beam
particles, 7, = (1 — B2)~%/? is the relativistic mass factor, ¥, = Bic is the av-
erage axial velocity, g5 and m, are the particle charge and rest mass, respec-
tively, and ¢ is the speed of light in vacuo. In addition, the particle motion in
the beam frame is assumed to be nonrelativistic. We introduce the scaled time
variable s = Byet, and the (dimensionless) transverse velocities ' = dz/ds and
y' = dy/ds. Then, within the context of the assumptions summarized above, the
collisionless nonlinear beam dynamics in the transverse, laboratory-frame phase
space (z,y,2',y’) is described self-consistently by the nonlinear Vlasov-Maxwell
equations for the distribution function fy(z,y,z’,y’,s) and the normalized self-field
potential ¥ (z,y,s) = gd(z,y,s)/vPmBic?, where ¢(z,y,s) is the electrostatic
potential. For a thin beam (r, < S), the transverse focusing force on a beam

particle produced by the periodic quadrupole field can be approximated over the
cross-section of the beam by

Froc = ~kq(s)[zé; — y&] , (1)

where (z,y) is the transverse displacement of a particle from the beam axis, and
the s-dependent focusing coefficient x,(s + S) = k4(s) is defined by

g By (s)
YompPc?

Kq(s) = (2)
Here, the field gradient Bj(s) is defined by B;(s) = (0B%/0y)(0,0) = (0B{/02)0,0)-
Note from Eq. (2) that x,(s) has the dimensions of (length)™>. In terms of the
normalized self-field potential ¥ (z,y,s) = g@(z,y,s)/vimsBEc* and the distribu-
tion function fy(z,y,z’,y’,s), the nonlinear beam dynamics and collective pro-
cesses in the laboratory-frame transverse phase space (z,y,2’,y') is described self-
consistently by the Vlasov-Maxwell equations [1,23]
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Here, ny(z,y, s) = [ de'dy’ f; is the number density of the beam particles. Moreover,
the laboratory-frame Hamiltonian H, (z,y,’,y’,s) for transverse single-particle
motion consistent with Eqs. (3) and (4) is given (in dimensionless units) by

. 1 1
H.L(:E’ Y, IL", ylvs) = f—;(wlz + yl2) + 554(5)(:’:2 - yZ) + 1/)(1"1 y,S) . (5)

The nonlinear Vlasov-Maxwell equations (3) and (4) are rich in physics content
and are widely used to describe the stability and transport properties of an in-
tense nonneutral beam propagating through a periodic focusing quadrupole field
kq(s + S) = Ky(s). While considerable progress has been made in analytical and
numerical studies of Eqs. (3) and (4) [7-24], detailed calculations of the equilib-
rium and stability behavior are generally complex because the quadrupole focusmg
coefficient x,(s) is both s-dependent and oscillatory, with f dsky(s) = 0 for a peri-
odic focusing lattice. Indeed, as described in Ref. 23, only recently has a canonical
transformation been developed that utilizes an expanded generating function that
transforms away the rapidly oscillating terms in Eq. (5), leading to a Hamiltonian
in the transformed variables, H(X,V, X", V', s) = (1/2) (X2 +Y"?) +(1/2)k 1, (X2 +
)72) + 1/)(5(, Y,s), where k7, = const. (independent of s).

IIT COMPACT TRAP CONFIGURATION TO MODEL
PERIODICALLY-FOCUSED INTENSE BEAM
PROPAGATION OVER LARGE DISTANCES

In practical accelerator applications, if the spacing between quadrupole magnets
corresponds (for example) to S = 2m, and the transverse nonlinear beam dynamics
described by Eqgs. (3)-(5) is to be followed in detail for 500 lattice periods, then
the length of the transport system that is required is 1 km. The obvious question
arises as to whether or not it is possible to model the nonlinear transverse beam
dynamics described by Egs. (3)-(5) in a compact laboratory configuration. The
answer is yes, and the key is to recognize that the particle motion in the frame of
the beam is nonrelativistic, and that the oscillatory quadrupole focusing terms in
Egs. (5) can be simulated in the laboratory frame by applying oscillatory voltages
to cylindrical electrodes in a Paul trap configuration as illustrated in Fig. 1.

To model an axially continuous charged particle beam (or a very long charge
bunch), we consider a long nonneutral plasma column [Fig. 1(a)] with length 2L

w
—
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and characteristic radius r, < L, confined axially by applied dc voltages V=
const. on end cylinders at z = L. The particles making up the (nonrelativistic)
nonneutral plasma in Fig. 1(a) have charge g and mass m. With regard to transverse
confinement of the particles in the z — y plane, there is no applied axial magnetic
field (By = Boé, = 0). Rather, segmented cylindrical electrodes (at radius r,,) have
applied oscillatory voltages +Vy(t) over 90° segments with the polarity illustrated
in Fig. 1(b). Here, the applied voltage Vo(t) is oscillatory with

T
/0 dtVe(t) =0, (6)

where T' = const. is the period, and fo = 1/T is the oscillation frequency. While
different electrode shapes will result in an oscillatory quadrupole potential near
the cylinder axis, the configuration shown in Fig. 1(b) is particularly simple and
amenable to direct calculation. Neglecting end effects (0/9z = 0), and representing
the applied electric field by E, = =V 1 ¢,(z,y,t), where Vi -E; = 0 and V x Eg =~
0, it is readily shown that the solution to V3 ¢.(z,y,t) = 0 that satisfies the
appropriate boundary conditions at r = r,, in Fig. 1(b) is given by

bal,y,1) = 4er(t) 55 sin(ér/2) (%)22 cos(246) (1)

=1 4

for 0 < r < ry and 0 < 8 < 27. Near the cylinder axis (r < ry,), Eq. (7) readily
gives to lowest order

ab(e,,1) = g ()& ) ®)

where the oscillatory quadrupole focusing coefficient ,(t) is defined by

_ 8qW(t)

Ke(t) = ol (9)

From Egs. (6) and (9), note that k(¢ + T) = ko(t) and [ dtr,(t) = 0. Moreover,
k4(t) has dimensions of (time)~2. Most importantly, from Eq. (7), the leading-
order correction to Eq. (8) is of order (1/3)(r/ry)* Therefore, for example, if the
characteristic radial dimension 7, of the plasma column in Fig. 1 satisfies r,/r, S
0.1, then the corrections to the simple quadrupole potential in Eq. (7) are smaller
than one part in 10* over the transverse region occupied by the plasma particles.
That is, for sufficiently small r,/r,,, Eq. (8) is a highly accurate representation of
the applied quadrupole focusing potential @,(z,y,t). Additional segmentation of
the electrodes could in principle be used to cancel the residual octopole potential.
We now construct the Hamiltonian for the transverse particle motion, neglect-
ing axial variations (8/0z = 0). Denoting the (dimensional) transverse particle
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velocities by @ = dz/dt and y = dy/dt, and the self-field electrostatic potential due
to the plasma space charge by ¢s(z,y,t), it readily follows that the (dimensional)
Hamiltonian H, (z,y,&,¥,t) describing the transverse particle motion is given by

o | T 1
Hyi(w,y,&,9,1) = 5m(&® + %) + gmee()(a® — ") + ¢ds(@,9,1) . (10)
where use has been made of Eq. (8). The striking feature of the transverse Hamil-
tonian in Eq. (10) is that it is identical in functional form to the transverse Hamil-
tonian defined in Eq. (5) provided we make the replacements

t—s,
(€,9) = ('Tlay/) )
“ule,,t) = $(e,9,9) | (11)

Kq(t)[Eq. (9)] = &q(s)[Eq. (2)] ,
;%HJ_(IE,’( , I, 9,1) — fll(:v,y,z', v, s),

in Eq. (10). Therefore, the collective processes and nonlinear transverse dynamics
described by Eq. (10) and the configuration in Fig. 1 are fully equivalent to the
collective processes and nonlinear transverse dynamics described by Eq. (5) for
an intense nonneutral beam propagating through a periodic focusing quadrupole
magnetic field, provided we make the replacements in Eq. (11). For example, intense
beam propagation through 500 quadrupole magnet lattice periods S is equivalent to
studying the transverse dynamics of the compact nonneutral plasma configuration
in Fig. 1 (which is axially stationary in the laboratory frame) for 500 oscillation
periods T' of the voltage Vo(?). ,

For completeness, consistent with Eq. (10) and Fig. 1, we summarize here the
nonlinear Vlasov-Poisson equations describing the self-consistent evolution of the
distribution function f(z,y,%,7,t) and self-field electrostatic potential ¢(z,y, t)in
the transverse phase space (z,y, #,y). Of course, the characteristics of the nonlinear
Vlasov equation correspond to the single-particle orbit equations calculated from
Eq. (10), with dx, /dt = m™"0H /3%, and dx, /dt = —m~'0H, /0x . It readily
follows that the nonlinear Vlasov-Poisson equations for f(z,y,,,t) and ¢,(z,y,t)
consistent with the Hamiltonian in Eq. (10) can be expressed as

9.,.9 .9 99,\9 A 99 Y01, _
{at + :cam + yay - (h,q(t)il? + m6$¢s) 1 - <_"q(t)y+ may¢s) ay} fb =0,
' (12)

and
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+Vy (1)

FIGURE 1(a). Axial confinement of a long (L > r,) noneutral plasma column
is provided by applied dc voltages V = const. on end cylinders at z = £L.

FIGURE 1(b). Transverse confinement of the noneutral plasma column is
provided by cylindrical electrodes at » = r,, with applied oscillatory voltages
+Vp(t) over 90° segments with Vo(t + T') = Vo(t) and fOT diVo(t) = 0.
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I .
(ﬁ + 67_]2) ¢s = —4TFQ/d$d1/f ) (13)

where n(z,y,t) = [dzdyf is the particle number density. As expected, the collec-
tive processes and transverse plasma dynamics described by the nonlinear Viasov-
Poisson equations (12) and (13) for the nonneutral plasma configuration in Fig. 1
are identical to those described by Eqgs. (3) and (4) for an intense beam propagat-
ing through a periodic focusing quadrupole magnetic field, provided we make the
replacements in Eq. (11).

Typical oscillatory waveforms for the quadrupole focusing coefficient &,(t) =
(8q/mm)Vo(t) defined in Eq. (9) are illustrated in Fig. 2. Here, Fig. 2(a) corresponds
to a periodic step-function lattice with maximum amplitude £, and filling factor
7, and Fig. 2(b) corresponds to a sinusoidal waveform with k,(t) = £, sin(2n¢t/T),
where &, = const. and T =1/ f, is the oscillation period.

The oscillatory applied potential, (m/2)r,(t)(z? — y?), in Eq. (10) [or, equiva-
lently, (1/2)k4(s)(z%—y?) in Eq. (5)] typically results in a nonneutral plasma column
(or intense charged particle beam) that has a pulsating elliptical cross-section [23]
with characteristic transverse dimensions a(t) and b(¢) in the = — y plane (see also
Ref. 32). In this regard, it is convenient to denote the on-axis (r = 0) plasma den-
sity by i and the corresponding plasma frequency by &, = (47ng?/m)'/?. From
Eq. (10), we further denote the characteristic (angular) oscillation frequency &,
for the transverse motion of a single particle in the (maximum) focusing field by
@y = |&g|V2 = |8gVo/mmr2 |2, where Vo = |Vo(t)|mas is the maximum applied
voltage. Transverse confinement [23] of the nonneutral plasma by the field requires
@p/V/2 < &,. On the other hand, validity of the Hamiltonian averaging technique
(23] summarized in Ref. 32 requires that the oscillation frequency fo of the applied
voltage Vj(t) be sufficiently large and that the maximum voltage Vo be sufficiently
small that @, < 27 fo. Combining these inequalities gives

1
75(.:)1, < L:Jq < 27Tf0 y (14)
or equivalently,
L (amig)" L sqba |7 f (15)
V2 \ m 27 \mmr? o

The inequalities in Eq. (15) assure robust transverse confinement of the plasma
particles by the oscillating voltage V5(t) in Fig. 1. Equation (15) applies to either
a single-species pure ion plasma or to a pure electron plasma. For a nonneutral
electron plasma (¢ = —e and m = m,), which is relatively simple to create and
confine in a practical sense [26,27], Eq. (15) becomes

f/ 1/2
6.35 x 10%(72)Y/2 < 1.07 x 107(—‘i— < fo, (16)

w
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0.0 0.5 1.0 1.5 2.0
t/T

njed e O

0.0 0.5 1.0 1.5 2.0
t/T

FIGURE 2. Illustrative oscillatory wave forms for the quadrupole focusing
coeflicient k,(t) = (8¢q/nm)Vy(t) corresponding to (a) the sinusoidal waveform
rq(t) = £, sin(27t/T), where &, = const., and (b) a periodic step-function
waveform with maximum amplitude £, and filling factor 7.
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where #, Vg, 7w, and fo are expressed in units of em=3, volts, cm, and s~!, re-
spectively. As illustrative design parameters for a pure electron plasma, we take
Vo = 100V and r,, = 10ecm. Equation (16) then gives the requirements f, = 10.7
MHz and # < 2.8 x 108¢m ™3, which are both tractable requirements from a practi-
cal standpoint [26,27]. For a pure ion plasma, the requirements on the oscillation
frequency fy are less stringent. For example, for protons (m = m,, ¢ = +€, and
me/m, = 1/1836), assuming V5 = 100V and r, = 10cm, Eq. (14) gives fo = 254
kHz and 7 < 2.8 x 10%cm 2.

IV. CONCLUSIONS

In summary, in this paper we presented in Sec. II a brief description of the non-
linear Vlasov-Maxwell equations describing the collective processes and nonlinear
transverse dynamics of a thin (r, <« S), intense charged particle beam propagating
through a periodic focusing quadrupole magnetic field with axial periodicity length
S = const. In Sec. IlI, a compact Paul trap configuration was described, which
fully simulates the equivalent collective processes and nonlinear transverse beam
dynamics in a periodic focusing transport system. This configuration (Fig. 1) of-
fers the possibility of simulating intense beam propagation over large distances in
a compact configuration which is stationaery in the laboratory frame.
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Intense Nonneutral Beam Propagation
Through a Periodic Focusing Quadrupole
Fleld IT — Hamiltonian Averaging
Techniques in the Smooth-Focusing
Approximation

Ronald C. Davidson, Hong Qin, and Gennady Shvets

Plasma Physics Laboratory
Princeton University, Princeton, New Jersey 08543

Abstract. This paper considers a compact Paul trap configuration to model the trans-
verse nonlinear dynamics of an intense charged particle beam propagating through a
periodic focusing quadrupole magnetic field in the collisionless regime. A long non-
neutral plasma column (L > r,) is confined axially by applied dc voltages V = const.
on end cylinders at z = =+L, and transverse confinement of the particles in the
z — y plane is provided by segmented cylindrical electrodes (at radius r,) with ap-
plied oscillatory voltages +£V;(t) over 90° segments. Here, Vo(t + T) = Vp(t), where
T = const. is the oscillation period. Neglecting axial variations (8/9z = 0), the
Hamiltonian describing the transverse motion (assumed nonrelativistic) of a par-
ticle with charge ¢ and mass m near the cylmder axis (rp, &€ ry) is given by
Hi(z,y,2,9,t) = (m/2) (22 + )+ (m/2)re(t)(z* = v°) + g¢; (z, y, 1), where ¢4(z, y,1)
is the self-field electrostatic potential, and k,(t) = 8¢Vy(t)/mmr? is the (oscillatory)
quadrupole focusing coeflicient due to the applied field. Using a third-order Hamil-
tonian averaging technique [R. C. Davidson, H. Qin, and P. J. Channell, Physical
Review Special Topics on Accelerators and Beams 2, 074401 (1999)], a canonical
transformation is employed that utilizes an expanded generating function that trans-
forms away the rapidly oscillating terms in the Hamiltonian H, (z,y, £, 9,t). Formally,
€ = |Rg|T?/(27)? < 1 is treated as a small dimensionless parameter, where &, is the
characteristic (maximum) amplitude of the applied quadrupole field, and the canon-
ical transforma.tlon is carrled out correct to order €3. This leads to a Hamiltonian,

H (R, Y, X, V1) = (m/2)(X 47 )+ (m/2)é (x2.+ Y2) + ¢,(X,¥,1), correct to

order €3 in the ‘slow’ transformed variables (X, Y, X,Y). Here, the transverse focusing
coefficient in the transformed variables satisfies ofzz = const., leading to enormous sim-

plification in the analysis of the nonlinear Vlasov-Poisson equations for F'( XY, X Y 1)
and qSS(X Y ,1).
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I INTRODUCTION AND THEORETICAL MODEL

As discussed in a previous paper [1], a compact Paul trap can be employed to
mode! the transverse nonlinear dynamics of an intense charged particle beam prop-
agating through a periodic focusing quadrupole magnetic field in the collisionless
regime. The basic configuration is illustrated in Fig. 1 of Ref. [1], where a long
nonneutral plasma column (L > r,), consisting of a single charge species with
charge g and mass m, is confined axially by applied dc voltages V = const. on end
cylinders at z = £ L. Transverse confinement of the particles in the z — y plane is
provided by segmented cylindrical electrodes (at radius r,,) with applied oscillatory
voltages £V (t) over 90° segments as shown in Fig. 1. Here, Vo(t +T) = V5(¢) and
ST dtVa(t) = 0, where T = const. is the oscillation period and fo = 1/T is the
frequency. Near the axis of the cylinder (r, <« ry) the applied focusing potential
$ap(z,y,t) can be approximated by [1]

q¢ap(x»y7t) = %m/{q(t)(wz - y2) )

_ 8a%(?)

2
mnrs,

210 . 1)

over the radial extent of the plasma column. Here, the oscillatory quadruple fo-
cusing coefficient #4(t + T') = k,(t) has dimensions of (time)™>. We denote trans-
verse particle velocities by # = dz/dt and § = dy/dt. Neglecting axial variations
(8/0z = 0), the nonrelativistic Hamiltonian H,(z,y,,y,t) describing the trans-
verse particle motion in Fig. 1 is given by

. 1 ., a1
Hi(z,y,&,9,t) = §m($2 +97) + gmeg(t) (e’ —¥°) + adi(e, 1) (2)

where ¢,(z,y,t) is the self-field electrostatic potential due to the space-charge of
the nonneutral plasma column.

The transverse equations of motion determined from Eq. (2) are the characteris-
tics of the corresponding nonlinear Vlasov equation [2] for the distribution function
f(z,y,%,9,t) in the transverse laboratory-frame phase space (z,y, ,y). Therefore,
consistent with Eq. (2), the nonlinear Vlasov-Poisson equations for f(z,y,,9,t)
and ¢s(z,y,t) are given by [1]

8 .8 .8 gd \0 70 ,Yol,_
(fi+ige+igy = (s 2 ah) g~ (s L) 5} 7=

3)

o* 9 .
(5;2‘ + 6_y2) ¢s = —47”1/dmdyf p (4)
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where n(z,y,t) = [ didyf is the particle number density.

The nonlinear Vlasov-Poisson equations (3) and (4) are rich in physics content
and provide a complete nonlinear description of the transverse dynamics and col-
lective processes for the nonneutral plasma configuration illustrated in Fig. 1 of
Ref. [1]. However, detailed calculations of equilibrium and stability behavior based
on Egs. (3) and (4) are generally complex because the quadrupole focusing co-
efficient k4(t) is both time-dependent and oscillatory. Therefore, in the present
paper we employ a canonical transformation [3] that utilizes an expanded gener-
ating function [4,5] to transform away the rapidly oscillating quadrupole terms in
the laboratory-frame Hamiltonian H (z,y,,9,t) defined in Eq. (2). This leads to

the transformed Hamiltonian ?{l.():’,)k’,f(,f’,t) defined in Eq. (11) in the ‘slow’

transformed variables (X,Y,X,Y). The striking feature of Eq. (11) is that the
transverse focusing coefficient satisfies &2 = sy, = const. (independent of t), and

the transverse focusing is isotropic in the X —Y plane. As a consequence, the corre-
sponding nonlinear Vlasov-Poisson equations for F();’,f/,f(, ?,t) and ¢s()~(,¥~’,t)
are much more amenable to direct calculation than Eqgs. (3) and (4).

The organization of this paper is the following. First, the canonical transforma-

tion to the ‘slow’ transformed variable ():’,f/,):’,f/) is summarized in Sec. II. In
Sec. III, several properties of the nonlinear Vlasov-Poisson equations in the trans-
formed variables are discussed, and the back-transformation to laboratory-frame
variables (z,y, Z,7) is employed to determine plasma properties such as the (oscil-
latory) density profile n(z,y,1).

II CANONICAL TRANSFORMATION TO SLOW
VARIABLES

As noted in Sec. I, detailed calculations of equilibrium and stability behavior
based on Eqgs. (3) and (4) are generally complex because the quadrupole focusing
coefficient ,(t) is both time-dependent and oscillatory, with [ dtk,(t) = 0. In
a recent analysis, however, we have developed a canonical transformation [3] that
utilizes an expanded generating function {4,5] to transform away the rapidly oscil-
lating terms in Eq. (2). The present analysis introduces the dimensionless small
parameter ¢ defined by

e=—— <1, (5)

where |&,] is the characteristic maximum amplitude of the quadrupole focusing
coefficient. The single-particle Hamiltonian for transverse particle motion defined
in Eq. (2} is formally expressed as

.. | . 1
Hl(mvyamvyv t) =¢ ;)_’m‘(‘rz + y2) + Em'iq(t)(zz - y2) + q¢s($,y,t) ’ (6)
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where the small parameter ¢ is proportional to the strength of the focusing field.
We employ a near-identity canonical transformation {3] from laboratory-frame vari-
ables (z,y,2,y) to ‘slow’ variables (X, Y, X,Y’) that is generated by the generating
function

S(:c,y,X,Y,t)::cX—l—yY+Ee”Sn(x,y,X,Y,t). (7

n=1

Consequently, the transformed Hamiltonian H, (X, Y, X,Y, t) in the new variables
is given by

HJ._ - Z ann = H.L + %S(w7y7X7 Yat) ’ (8)

n=1

and the corresponding coordinate transformation is given by

a8 ol ] .o
X=—= S (z,y,X,Y, 1),
5% =T L g ay )
. 05 o & .0 oo
ZIC—E—X-I-;C %Sn(xaanayvt)' (9)

The equations for Y and g are similar in form, provided we make the replacements
(X,4) — (¥,5) and (2,X) — (3, in Eq. (9)

We choose, order by order, the generating function S, in such a way that H,
is independent of the fast time scale associated with the oscillations in x4(t). The
coordinate transformation is then determined iteratively when S, is known. We
introduce the definitions

on(t) = [ dim(t) , a(t) = [ dtlag(t) — o]

(o= [ ), () = ad(0) — a0

& = rpy = () — (o) = o [ dtlol(e) — ()] (10)

where k4(t + T') = £,(t) is assumed to have zero average with JT dtk,(t) = 0, and
odd half-period symmetry with k,(t — T/2) = —&4[—(t — T/2)]. Paralleling the
detailed analysis presented in-Ref. 3, we obtain the transformed Hamiltonian in
the slow variables correct to order €. This gives

1 2

PP F ; 22 1 o ~ “
HUX,Y, XY 1) = 5m(X +Y )+ 5mdf(X* +Y7) +¢o(X, Y1), (1)
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where we have set ¢ = 1. Here, &7 = ky, = const. is the constant focusing coefficient

defined in Eq. (10), and we have introduced the (canonical) fiber transformation
to shifted velocity coordinates defined by

X=X, X=X- (o)X,

V=Y, Y=V4(a)Y. (12)

In addition, correct to order €3, we calculate the coordinate transformation, z =
X 4 exy + €ay + a3, & = X + ey + €233 + €13, etc. Setting € = 1, this gives

o(X,0,X,7,0 = 1= g0 +2( [ ap,0) X ,

XV, 58,0 = 1+ A0)K + { ~lag(t) = (ay)]

and

+ (/ot dtﬁ,,(t)) a% [(Aai - ?%) T%qbs()?,f/,t)] v (14)

where (), B,4(t), and 8,(t) are defined in Eq. (10). In addition, a,(¢) and (a,)
are of order €; f4(t) is of order €% and (ag)B,(t), a,(t)By(t), (fs dtB,()), and
(Jo d[84(t) — (8,)]) are of order €. The inverse coordinate transformation [3] can be
readily obtained correct to order €® by solving Egs. (13) and (14) for (X, ¥, X,¥)
in terms of (z,y,Z, 7).

The major simplification associated with transforming to the ‘slow’ variables
(5(,37,)”(,}?) is immediately evident from Eq. (11). In particular, the focusing
coefficient & = Ky, occurring in Eq. (11) is both constant (independent of t)
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and isotropic in the transverse X — Y plane. This should be contrasted with the
expression for the laboratory-frame Hamiltonian H, (z,y, 2', ¢, t) defined in Eq. (2),
where the focusing coefficient x,(¢) is a rapidly oscillating function of t. Making use
of Eq. (11), the nonlinear Vlasov-Poisson equations for the distribution function

F (X Y. XY, t) and self-field potential ¢S(X Y, t) in the transformed variables are
given by

8 20 20 (4o g8 .\ 0 A~qa)a}
9, %9 o979 ok 1+ 2% )% —(ov 4204 ) Ll ro0,
{3t+ % oy (‘”‘1 +max¢>ax (“"’ tmav®) 58

(15)

g o
( st aw) ¢ = —4mg / dXdVF | (16)

where n(X,Y,t) = J dXdV F is the particle density in the transformed variables.

II1 PLASMA PROPERTIES IN THE TRANSFORMED
VARIABLES AND BACK-TRANSFORMATION TO
THE LABORATORY FRAME

The enormously simple form of Egs. (15) and (16) in the transformed variables,
relative to Eqgs. (3) and (4) in laboratory-frame variables, permits the detailed cal-
culation of a wide range of equilibrium and stability properties that would otherwise
be elusive. We briefly summarize here a few of these properties, and the reader is
referred elsewhere [3,6] for a more complete discussion.

(a) Defining X = Rcos® and ¥ = Rsin 0, Egs. (15) and (16) support a broad
class of axisymmetric equilibrium solutions (8/80 = 0 = 8/8t) of the form

FO(X,V,X,Y) = FO(HY)

1 - N
§mw3R2 + q¢%(R) . (17)

o 1 L2 12
Here, R = (X2 + Y?)!/2 is the radial coordinate in the transformed variables, H}
is the single-particle Hamiltonian in the equilibrium field configuration, and the

equilibrium space-charge potential $(R) is determined self-consistently from the -
(nonlinear) Poisson equation

10 B 0 - Lo
3B 8R¢0( R) = —47rqn°(R)=—47rq/dXdYFO('H[J)_). (18)
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(b) Examples of self-consistent Vlasov equilibria F°(HY ) range from the thermal
equilibrium [2,3,6-9] distribution F°(HS) = Bexp(~H]/T), to the Kapchinskij-
Vladimirskij distribution [3,6,10], to the so-called ‘waterbag’ distribution {3,6,11].
Denoting the on-axis equilibrium density by n = no(f?, = 0), for the entire class
of equilibrium distributions F°(#%) the condition for transverse confinement [3] of
the particles [n°(R — 0o) = 0] by the applied focusing field is given by

(19)

Equation (19) is simply a statement that applied focusing force must exceed the
(defocusing) space-charge force in order for there to be transverse confinement of
the particles.

(c) Of course the nonlinear Vlasov-Poisson equations (15) and (16) possess global
conservation constraints [2,12,13] corresponding to the conservation of particles,
generalized entropy, and total energy. These constraints can be used to show that
a sufficient condition for linear and nonlinear stability is given by [12,13]

)
TH

FO(HY) <0. (20)

The stability theorem in Eq. (20) is a very powerful result, and is valid for arbi-
trary space-charge intensity consistent with Eq. (19). Whenever the equilibrium
distribution F°(HY) is a monotonically decreasing function of energy H9, there is
no free energy available [12,13] for perturbations o grow, and therefore the system
is stable.

(d) In general, once the distribution function F(X, Y, X, f",t) in the slow vari-
ables is calculated from the nonlinear Vlasov-Poisson equations (15) and (16), it is
straightforward to determine the corresponding distribution function f(z,y,&,9,t)
in the laboratory frame {3]. Specifically, we make use of f(z,y,%,y,t)dedydidy =
F(X,Y,X,Y,1)dXdVdXdY and the fact that the Jacobian of the (canonical)
transformation in Egs. (13) and (14) is equal to unity correct to order €. This
gives

£(@,0,8,0,0) = F (X(2,0,8,9,0), ¥ (2.9,8,5,1), X(2,9,8,0,0, V (2,0, 8,3.),)

(21)

where the inverse coordinate transformation X(z,y, #,,t), X(z,y,,¥,t),+--, can

be easily obtained [3] correct to order €* by solving Eqs. (13) and (14) for X, X, - --
in terms of z, &, --.



(e) Equation (21) can be used to calculate a wide variety of properties of the
(oscillatory) solutions in the laboratory frame. For example, consider the class of
equilibria FO(H}) in the transformed variables, which have circular cross-section

and constant mean-square radius R2, = (R?, = N-!fdX dVdX dY R*F o(HY),

where N = [ dXdeXdYFO(% ) is the number of particles per unit axial length.
In the laboratory frame, however, it can be shown from Egs. (17) and (21)
that the mean-square transverse dimensions of the plasma column, (z%)(t) =
N~ [ dzdydidyz?f(z,y,,9,1) and (y?)(t) = N7 [ dedydzdyy®f(z,y, 2,9, 1), are
oscillatory with

(@) = 20 (1) = 511 B R

(7)(8) = 58(2) = {1+ Bt (22)

correct to order 3. From Eq. (10) and k4(t +T') = &,(t), it follows that f,(t+T) =
B, (1) oscillates with the same period T as the confining quadrupole field. Moreover,
Eq. (22) gives

+ 2L, (23)

where a(t + T) = a(t) and b(t + T) = b(t). Therefore, for the entire class of
equilibria F°(HY), the cross-section of the plasma column in the laboratory frame
corresponds to a pulsating ellipse with period T

(f) Finally, for the entire class of equilibria FO(H{ ) in the transformed variables,
we denote the solution for the equilibrium density profile by n°(R/Ry), where
we have scaled the radial coordinate to the rms radius Ry. Without presenting
algebraic details, it can be shown [3] that the corresponding density profile n(z, y, )
in the laboratory frame is given by

) R?,o y 22 yz 1/2
n(.’l:,y,t) = a(t)b(t) (l:az(t) + b2(t)] ) (24)

correct to order €. That is, the contours of constant density in the laboratory
frame are (pulsating) elhptlcal surfaces with z2/a*(t) + y*/b*(t) = const. From
Eq. (22), note that R2,/a(t)b(t) = [1 — B2(t)] ™" =~ 1, because B,(t) is of order €.

IV CONCLUSIONS

The canonical transformation and Hamiltonian averaging technique summarized
in Sec. II represents a powerful formalism [3] for transforming the laboratory-frame
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Hamiltonian H,(z,y,2,9,t) [Eq. (2)], with rapid oscillations in the quadrupole
focusing coefficient «,(t), to the Hamiltonian Hi(X,V,X,Y,t) [Eq. (11)] in the

‘slow’ transformed variables (X, Y, X, ¥). Because the focusing coefficient satisfies

A

wg = Kysq = const. in the transformed variables, and the transverse focusing force,
—ksy(X &, +Y8&,), is isotropic in the X — ¥ plane, the resulting nonlinear Vlasov-
Poisson equations (15) and (16) for F(X,Y,X,Y,t) and ¢,(X,Y,1) are readily
amenable to direct calculation (Sec. IIT). Time-dependent plasma properties in the
laboratory frame, such as the particle density n(z,y,), are also readily determined
by employing the back-transformation to laboratory-frame variables (z,y, z, ).
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Verification of Coulomb Order
in a Storage Ring

Rainer W. Hasse*

GSI Darmstadt, D-64291 Darmstadt, Germany

Abstract. We verify theoretically that the anomalous longitudinal temperature re-
duction of strongly electron cooled heavy ions in the ESR at very low density is ex-
plained by the fact that there is no intrabeam scattering and that the particles by their
Coulomb repulsion cannot pass each other any more. At the achievable momentum
spreads Coulomb order is reached at particle distances of the order of centimeters.
It is also shown that under the given experimental conditions in the proton NAP-M
experiment of 1980 intrabeam heating counteracts Coulomb order.

In 1996, Steck et al. [1] reported on measurements with very low density and
extremely electron cooled heavy ions in the Experimental Storage Ring (ESR) of
GSI. By Schottky noise measurements they found a sharp drop of the longitudinal
momentum spread dp/p by an order of magnitude from 5 x 107 down to 5 x 1077
for particle numbers from 10® down to 3 in the ring of about 100 m circumference.
Thus, arranged in linear chains the average distances between the ions would be
between 10 cm and 33 m. Due to machine limitations dp/p could not fall below
this lower value. A typical example is shown in Fig. 1.
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FIGURE 1. Experimental momentum spread vs. number of stored ions in the ESR for electron
cooled U%2* ions at 240 MeV /u (after ref. [1])
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The beam radius for the heavy beams could be determined to about 30 pm
and by emittance measurements, the transverse temperature was limited to about
1.5 eV. This anomaly resembles a strong suppression of intrabeam scattering below
a certain threshold. Since heating of the beam is caused by intrabeam scattering,
also heating is strongly inhibited, thus reaching the very low dp/p ~ 5 x 1077,

It has been speculated that the final beam structures might be the storage ring
analogues of Coulomb crystals as they were calculated in ref. [2] and as they were
found in ion traps [3]. Here we confirm with the methods applied in ref [4] that
indeed the beams resemble strings with particles which move slowly in the beam
direction but, however, cannot pass at each other any more. This type of order of
a liquid caused by the nearest neighbours only we call Coulomb order in contrast
to a Coulomb crystal which is generated by long range Coulomb interaction over
many neighbours.

In order to explain this effect we perform classical Monte-Carlo trajectory cal-
culations of two charged particles heading at each other with constant focusing
with the betatron frequency of the ESR and calculate the probability of these two
particles being reflected at each other. It is sufficient to consider the interaction of
two particles only since their mutual Coulomb repulsion acts only considerably at
near distance of the order of tens of micrometers. To have a constant beam radius
for all masses the experimental transverse temperature must obey the approximate
relation Tyrans = 7.5XA meV. This energy is distributed among the two transverse
degrees of freedom according to a Boltzmann distribution in harmonic potentials
with equal betatron frequencies wg = 27Qpc/L, where fc is the beam velocity,
Q=2.3 is the average tune, and L is the circumference of the ring. The longitudinal
kinetic energy is obtained from M(cf 6p/p)?/(81n2), where M is the mass, sec
rel. [1].

100 ——— r
F Opane = 2x10° 1

[ 0, =5x10°

S oo
(=T —

>
=]
1
~Ll.

reflect. prob. [%)]

[
(=
)
\'\

Jad
(=]
)
o
o
[=-]
[
o

d/ aws=)\-l
FIGURE 2. Calculated reflection probabilities vs. distance between particles for given temper-
atures

In order to systematize the calculations, three dimensionless parameters are in-
troduced: The relative transverse, Oy and longitudinal, Olong, kinetic energies
measured in units of the mutual Coulomb energy of two particles at a distance d,
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ec = ¢*v/d, where q is the charge and v is the relativistic parameter. These rel-
ative temperatures, thus, are the reciprocal gamma parameters in Wigner crystal
theory; i.e. a one-component plasma is in the gaseous state for I' <1, in the liquid
state for 1 < ' < 100, and in the crystalline state for I' > 170. Note, however,
that here I" does not play a decisive role since distances involved are much larger
than the Wigner-Seitz radius. Furthermore, the linear string density A = aws /dis

the axial number of particles within a Wigner-Seitz radius aws = (3(]2 [2M wf;)l/a.
Note that at zero temperature A = 0.709 is the limiting value for a Coulomb string
turning into a zigzag and A ~ 4 would give a helix with a string at the center [2].
For typical experimental values of the kinetic energies a result is shown in Fig. 2.
Within a factor of two in the distance, e.g. from 10 cm to 20 c¢m, the reflection
probability rises sharply from 10% to 90%. On the other hand, Fig. 3 shows a
contour plot of the reflection probability for fixed distance. Similarly, for given
distance the reflection probability varies very slowly with ©irans, 1.€. it goes from
10% to 90% about within a factor 100 in ©4ays, but more rapidly, with a factor of 5
only, in Ojeng. As a rule of the thumb elongei,/j,,s stays constant for given distance
and fixed reflection probability. In the analysis of the experiments, hence, the
results are little sensitive to the assumed transverse temperature of 7.5x A meV.
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etrams

FIGURE 3. Contour plot of the calculated reflection probabilities vs. relative transverse and
longitudinal temperature at fixed density A = 0.00015

With the help of these tools the ESR experiments were analysed with the results
shown in Fig. 4. In most cases the calculated reflection probability rises sharply
in the vicinity of the last upper (open) data point thus indicating that for larger
particle distances the ions cannot pass each other any more. In the last frame the
reflection probability is also calculated for the first ultracold data point (left line).
This is shifted to smaller distances by almost two orders of magnitude. It indicates
that here the ions move so slowly in the beam direction that reflection would happen
even for much smaller interparticle distances which, however, cannot be reached
experimentally. However, this distance is still two orders of magnitude larger than
the Wigner-Seitz radius (the typical Coulomb crystal string distance) which means
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that real Coulomb crystals instead of Coulomb order only cannot be produced in the
ESR with the present electron cooling methods. The same argumentation applies
to the two lines in the nickel frame where even multiple points were measured
for the same distance. An exception from this systematics is the case of argon
which suggests that the last upper data point should be somewhat smaller than
6p/p = 4 x 1075, In the titanium data there is no drop in the momentum spread.
The point used for evaluation evidently belongs already to the ultracold branch
which can also be seen from the low longitudinal temperature of table I.
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FIGURE 4. Experimental momentum spreads (points, left scale) and calculated reflection prob-
abilities (lines, right scale) vs. distance for the various ESR experiments [1]. The reflection
probabilities are calculated at the last upper or first lower (open) data point.

A summary of the data and of the results is shown in table . The linear density X
is about 5000 times smaller than the critical string density which shows again that
the order reached is far from the one of Coulomb crystals. The average transverse
rms displacement in the last column was calculated with [4] prms = dy/4X*O11ans/3.

As assumed, it settles around 30 pm for all elements as noted by the authors of
ref. [1]. In the next to the last column is shown the ratio of collisional time to



transverse period of a particle, Teon/Tirans = 1/ Ttrans/Tiong X d/prms- As a result,
thousands of betatron oscillations are performed during one binary collision, thus
indicating that intrabeam scattering is negligible.

TABLE I. Experimental data, momentum spread dp/p, distance d, Wigner-Seitz radius aws,
linear density ), longitudinal and transverse temperatures Tiong; Ttrans, reflection probability, rms
radius prms , and ratio of collision time to transverse period. The italicized lines are predictions.

Ring lon

E 617/ P d aws A Tiong | Thrans | TP | Prms Teoll

[MeV/u] | [107%] | [em] | [pm] [meVﬁ [meV] | [%] | [pm] “Terans

ESR | BCS* 240 2 017 [ 7.7 0.0046] 1.5 90 68 30 450
ESR | ®Ne!** 240 2 0.25 | 9.1 0.0036 | 0.40| 2000| 80 30 700
ESR | “0Ar®* 360 4 4 | 89 0.00020 19 3000 5 21 8500
ESR | *8Ti%* 240 2.5 0. |11.5 0.0026 9 370 | 100 30 950
ESR | 58Ni%+ 205 4 8 (136 0.00016 26 440 24 33 1300
ESR | 86K+ 240 4 6 1133] 0.00022 39 640 | 25 30 8000
ESR | B2XeXt | 240 6 10 |15.0| 0.00015] 120| 1000} 10 30 10000
ESR | ¥7Au%*| 360 6 2 |14.0] 0.00070| 290| 1500| 82 21 2200
ESR | 28U%* | 360 5 10 | 14.6| 0.00015| 240{ 1800| 99 21 13000
ESR p 65 1 02 | 9.1 0.0045| 0.01 7.5| 50 70 1000
SIS | 86Kr%0+ | 114 15 | 0.5-10{ 50 |0.004-0.01 401 90-200| 50| 60-90 | 100-4000
NAP-M P 65 1 2um | 8.0 42| 0.01 251 — 150 0.6

The two italicized lines are predictions for a proton experiment in the ESR stor-
age ring with the energy of the NAP-M experiment [5] and for a future krypton
experiment in the synchroton SIS at GSI at injection energy with the recently
installed electron cooler, respectively. The proton prediction is very close to the
existing carbon data. On the other hand, due to the stronger focusing forces in the
SIS (the horizontal and vertical tunes are 4.3 and 3.3), respectively) the threshold
of 50% reflection will be shifted to larger linear densities closer to the critical string
density i.e. to smaller interparticle distances. Coulomb order can be reached with
even larger momentum spreads of the order of 10~5. Here the calculation of the
reflection probability was carried out with anisotropic focusing, however with little
change in the results as compared to isotropic focusing.

Finally we analyse the cooling experiment with protons in the then existing
Novosibirsk NAP-M storage ring [5] which burned down afterwards. Here the
authors suggested long ago that order has been reached. Their argumentation
was based on the fact that if the proton current fell below 10 pA the noise power
dropped to unmeasurable levels and thereafter stayed constant. With the given
data of circumference 47.25 m, average tune 1.29, energy 65 MeV, the number
of particles in the ring for 10 gA current was N = 2.5 X 107 from the relation
I, = eN fey, where frey is the revolution frequency. An average transverse kinetic
energy of 25 meV was derived from the measured beam radius of 100 xm and an
average longitudinal kinetic energy of 10~* eV was obtained from Schottky noise
measurements. From this one gets the momentum spread of Fig. 5 with a critical
ép/p = 1075.

According to the last row of table I the linear density is A ~ 4 indicating that
the system is no longer in the linear regime and the average axial distance is 2 pm,
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FIGURE 5. Momentum spread vs. longitudinal distance between protons of the NAP-M ex-
periment (after ref. [5])

much smaller than the Wigner-Seitz radius of 8 um. The average spacial particle
distance is about 40 um. According to table I, collision time and transverse period
are about the same. Two particle calculations without taking into account other
neighbours, hence, do not suffice to simulate this system. Thercforc we performed
full molecular dynamics calculations with periodic boundary conditions as in ref. [4]
with 1000 particles under constant focusing and computed the Coulomb interaction
with Ewald summation [2].
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FIGURE 6. Half transverse (upper curve) and increase of longitudinal kinetic energy (lower

curves) due to intrabeam scattering up to thermal equilibrium (Thong = %T \rans) With the input

data of the NAP-M experiment. Shown is the average over 20 Monte-Carlo simulations. The long

lower line is without cooling and the short one with cooling with e-folding time 400yuscc.

Fig. 6 shows the average over 20 simulations with random initial coordinates
of the particles. With (short lower line) or without (long lower line) cooling, by
intrabeam scattering after 200 betatron oscillations the longitudinalal kinetic en-
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ergy already reaches one third of the value of the transverse kinetic energy. This
yields an initial longitudinal heating rate of more than 50 eV/sec and after about
1000 betatron osciilations, i.e. about 400 usec, without cooling thermal equilibrium
(Olong = %G)tmns) has been reached. Cooling with an e-folding time of 400usec just
has the effect that the longitudinal temperature reaches only half of the value of
thermal equilibrium. This has to be compared with typical electron cooling times
of a few milliseconds [6]. The authors’ theory of collective interaction of the protons
together with beam magnetization [7] may explain a possible suppression of intra-
beam scattering in this case. Our predictions, on the other hand, cf. table I, would
yield Coulomb order for an interparticle distance of 0.2 cm, i.e. proton currents
below 10 pA.

In summary, our calculations of the reflection probabilities have shown that with
the ESR, experiments for the first time Coulomb order has been established in a
heavy ion storage ring. This order is of liquid type where the particles still move
slowly against each other but cannot pass any more.

The author likes to thank M. Steck for valuable discussions.
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Proton Beam-Electron Plasma Interactions
R. E. Pollock, Jennifer Ellsworth, M. W. Muterspaugh, D. S. Todd

Indiana University Department of Physics and Cyclotron Facility (IUCF)
Milo B. Sampson Lane, Bloomington IN 47408-1398

Stored, cooled proton beams of 200 McV with intensities up to 3 mA pass along the axis of a
Penning-Malmberg trap containing a nonneutral plasma of 1010 electrons. The plasma is
maintained in a warmed steady state by injecting energy and angular momentum; the elevated
temperature giving weak ionization to replenish lost electrons. Comparing charge density
wave velocity with diocotron mode frequency gives continual non-destructive monitoring of
plasma radius and density. The beam is observed to cause an increase in plasma radius
indicating a torquing mechanism not yet understood. The effect is weakly sensitive to shifts
in beam position or angle. Monitoring power input shows ecither "cooling" (increased electron
loss rate) or heating depending on regulation method. Extension of these studies to higher
containment fields will be described.

INTRODUCTION

Study of properties of long-lived nonneutral plasmas began at Indiana University
five years ago. A warm electron plasma can be stabilized by controlled power input,
permitting quite detailed examination of near-equilibrium properties. A full description
of techniques developed for creating, controlling and monitoring this plasma target is
beyond the scope of this brief paper, and will be published elsewhere (1). The next
section provides an abbreviated summary of relevant system properties.

For the past three years, experimental study of the effect of particle beams of high
velocity on a trapped electron plasma has been carried out by placing the plasma in the
path of a stored proton beam in the IUCF Cooler. Initial observations were limited to
energy transfer from beam to plasma at beam intesities below 0.2 mA, and showed
evidence for two mechanisms: one present with coasting beam (no time structure); and
the second with bunched beam (multiple harmonics of the 2 MHz orbit frequency). The
magnitude of the heating by coasting beam was in excess of estimates based on single
particle scattering by two or three orders of magnitude. Bunching the beam increased
the heating with a term quadratic in beam current, apparently a collective mechanism

CP498, Non-Neutral Plasma Physics I, edited by John J. Bollinger, et al.
© 1999 American Institute of Physics 1-56396-913-0/99/$15.00

336



involving charge density wave excitation. By overlapping a beam orbit harmonic with a
plasma standing charge density wave resonance (Gould-Trivelpiece mode (2)), the
bunched heating could be enhanced more than one-hundred-fold. The bunched beam
heating was strong enough off-resonance to limit beam currents to below 0.5 mA.

In the past few months, a new capability of non-destructive plasma radius
monitoring with beam present, has shown that angular momentum transfer from beam to
plasma is significant. In the same interval, a new injector for the storage ring has made
intensities up to 2 -3 mA available. A sampling of observations of beam-induced plasma
expansion, and the revisions to our understanding of the power transfer comprise the
two beam interaction sections below.

This data must be understood as an interim report on work in progress. Some
variability among beam exposures indicates the presence of uncontrolled parameters in
the interaction process. At higher beam currents, the plasma appears sensitive to beam
properties which are not visible to the present storage ring diagnostics. Further

investigation may reveal ways to use the plasma response as an aid to optimization of
storage ring behavior.

SYSTEM PROPERTIES

The electron plasma is contained by a modified form of Malmberg-Penning trap
with B < 0.23 T, length 0.37 < L < 0.52 m, wall radius Ry, = 0.051 m, and a vacuum
in the range 0.3 < p < 2 nTorr. The plasma is formed at low density by off-axis
injection from a tungsten filament, then heated by a broadband noise signal applied to a
ring electrode so ionization of residual gas can be used to raise the density to any desired
value below the confinement potential limit of 200 eV. The input power is then reduced
to sub-nanoWatt level to allow the plasma temperature to fall to about 4 eV where a
weak, continuing ionization can balance slow loss of particles to maintain a constant
particle number. The containment lifetime for a plasma electron lies in the range from 1
to 10 minutes, improving with increasing magnetic field or with the application of an
(uncalibrated) torque by means of the "motor", a rotating dipole or quadrupole electric
field applied to eight sector electrodes near one end of the trap. The plasma itself can be
maintained in the time-independent near-equilibrium state for days or weeks, allowing
quite detailed examination of its properties.

Non-destructive diagnostics include an N' = N/L monitoring process, in which a
transverse kick is applied every 3 s to induce tranverse displacement for measurement of
the (diocotron + magnetron) revolution frequency of the displaced plasma column about
the trap symmetry axis. Negative feedback returns the plasma to the trap axis between
measurements. The "kicked frequency” FFT peak is stable in the range 12 < fx < 60
kHz at B, = 0.144T, corresponding to 1 1010/m < N' <5 101%/m.
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The plasma potential V) is measured by exciting one or more standing charge
density wave resonances (axisymmetric Gould-Trivelpiece modes). To lowest
approximation, the wave velocity v,, is given simply by the plasma potential (v,/c)2 =
qVp/mc2. The calibration is verified by the destructive dump pulse technique (lowering
potential of one endcap until loss of particles is seen). An effective length for the plasma
is extracted which agrees with the electrostatic expectation to about 10%. The
exponential leading edge of the dump pulse also gives a check on plasma temperature.
However because the ionization rate is exponentially sensitive to temperature, the
stabilized plasma is essentially a constant temperature system with kT about 4 eV.

The ratio of Vy; to line charge density gN'/(4ne,) gives the logarithmic factor [1 +
In (Rw/Rpy)?] from which the plasma radius Ry is extracted. The absolute value of Rp1
is subject to systematic uncertainties from end effects and other corrections which are
believed to be established at about the 20% level. The relative precision is much better,
so that small changes in radius are readily observed as systemn properties are varied.

The G-T resonance gives a useful method for stabilizing the value of V. An rf
synthesizer supplies a sinusoidal signal to a ring electrode. The frequency is tuned just
below the resonance peak. If the plasma density drifts downward, the peak overlaps the
synthesizer signal more strongly and the resulting enhanced wave amplitude supplies
power for ionization to restore the equilibrium. By measuring the transmitted wave
amplitude excited by the line source, and the damping width of the resonance signal
(weakly excited by a swept source or the broadband noise source), the absolute power
input can be determined.

An independent check of the power input calibration is obtained by using
additional power to slowly raise the number of electrons at a measurable rate and making
use of the 20 eV chemical potential ((ionization energy + 3/2 kT): creating a pair of
electrons from one energetic tail electron in a collision with Hj residual gas; then adding
thermal energy to the new one). The two methods are in reasonable agreement (3).

In the absence of beam, as the particle number N is varied, power input required to
maintain a plasma is found to increase nearly linearly with N2, This behavior is
illustrated in Figure 1. To display the similarity of shape, the (+) vertical scale has been
adjusted to obtain agreement at large density. One would expect terms linear in N, for
example to maintain constant temperature in the presence of radiation cooling. This is a
likely explanation for the curvature and offset at the lower left. It is tempting to ascribe
the dominant (N')2 term to an electron loss mechanism of this form. However this is
not consistent with loss rate observations when the heat source is removed.

An example of the use of the non-destructive plasma radius determination in the
absence of beam is shown in Figure 2, a comparison of the volume density in
equilibrium with the density observed when heat is removed and the plasma allowed to
"free fall”. The density is somewhat higher at higher magnetic confinement fields. The
freefall and equilibrium shapes are similar, but with lower density in freefall.
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FIGURE 1. Heat input (arbitrary units) versus equilibrium number of electrons per unit length N'
squared (N in units of 1010/m). The diamonds and crosses refer to broadband and monochromatic heat

input regulation methods respectively. The positive intercept of the ordinate is evidence for a small

contribution from terms linear in N'.

2.5

1.5

x freefall: 0.232 T
afreefall: 0144 T
@ equilibrium ;0.144T

. 8

%]
PN O T I I O O K )
IIIIIIIII

X
L

0.5

3&.
X % :T

111
T f

A A B

sy

1L L I

volume density (10713/m"3)

o)

N /L[10710 /m)

FIGURE 2. Plasma volume density n (electrons/m3) versus N/L (electrons/m). Three data sets show
“heated" equilibrium, and "freefali" unheated decline, the latter at two field levels. The plasma radius
adjusts itself as electrons are lost so the volume density falls about half as fast as N/L. While the freefall
density is lower than the equilibrium density for the same B field, the similarity of shape suggests that

the decline proceeds through a set of near-equilibrium states.
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BEAM- PLASMA TORQUE

Using the non-destructive plasma radius measurement scheme described in the
preceding section allows radius changes to be monitored in the course of exposure to a
fast proton beam. The quantity (Rp/Ry)2 gives the fraction of the trap cross-sectional
area occupied by plasma. Well below the Brillouin limit, this is proportional to the
canonical angular momentum per particle. Observations indicate that the beam-plasma
interaction involves a significant and unanticipated angular momentum transfer leading
to radial growth of the plasma.

As shown in Figure 3, the plasma area can be doubled with a beam current of
about 0.3 mA, overwhelming the limited compression torque of a rotating electric dipole
field "motor". The motor amplitude is adjusted for each beam current to supply half the
power required to maintain plasma equilibrium. Note that at zero beam current, the
motor torque is sufficient to raise or lower the plasma area by 30%.

Arguing from angular momentum conservation, one would expect no torque in a
system with axial symmetry. However attempts to reduce the observed radial expansion
by changes in beam position and angle have been largely unsuccessful. Using storage
ring localized parameter combinations, it is possible to carry out the four-dimensional
search over a restricted range of beam offsets. Results in the horizontal plane are
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shown in Figure 4. Plasma expansion increases only slightly for large transverse beam
displacements. The dependence on beam angle is stronger, but the scan could not be
extended further to show either a decrease on the right side (if optimal alignment gives
maximum torque) or a rise on the left (if optimal alignment gives minimum torque). To
resolve this issue, stronger steering magnets sets could be added to the storage ring to
span a wider range of beam angles.
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FIGURE 4. Sensitivity of beam-caused expansion to misalignment of beam relative to plasma. Plot
bottom represents plasma in equilibrium with no beam. Beam position scan, spanning 16 mm at beam
currents of 0.27(e) and 0.58 mA (*), shows a weak enhancement for large displacements. The angle
scan, covering 3 mrad at 0.27 mA (+). appears to show that expansion is reduced when misaligned, but

if so, the inferred reduction on the right side was inaccessible.

Tests for sensitivity of the beam-caused expansion to other parameters show that
beam bunching, changes in vacuum by turning off or firing pumps, operating with
different motor settings, while causing changes in the equilibrium plasma area in the
absence of beam, do not alter the tendency in all cases for the beam to cause a radius
increase, with decreasing rate of increase at higher beam currents.

As an example, the question of how the magnetic field strength might affect the
observed plasma expansion was addressed in one short run, where three fields
extending up to the strength limit of the present trap were used. For this run the rotating
dipole field was set at 0.48 MHz, where heating of the plasma by the motor field is
weakened, with a fixed large amplitude. Data at the 0.144 T level is sparse because that
field value was studied more extensively in other beam exposures. The general trend of
a rise at low beam current with saturation at higher current was observed for all three
fields, but the initial slope was steeper for higher fields, as was the equilibrium radius in
the absence of beam. The data are presented in Figure 5.
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coasting beam heats the plasma very little up to 0.2 mA, while the bunched beam adds a quadratic term.



BEAM - PLASMA POWER

The transfer of energy from beam to plasma is seen as a drop in the power applied
to maintain a time-independent state. However the power input to maintain the plasma
depends markedly on the stabilization mechanism. An example is shown in Figure 6.
If N’ is held fixed, beam heating is indicated by the negative slope. However if plasma
potential is regulated, a strong “cooling” is indicated by the positive slope.

If the plasma potential is held constant, increasing radius requires a higher line
density N' = N/L with increasing beam. As shown in Figure 1, the power input grows
with N' so this regulation method should exhibit a power demand increasing with beam
current as though the beam were cooling the plasma. However the observed cooling is
too strong for quantitative agreement with this explanation.

In contrast, if N' is held fixed, the strong "cooling" is eliminated, the power input
from the coasting beam is near zero at currents below 0.2 mA, while the bunched beam
adds a collective heating term, quadratic in beam current. For higher beam currents
Figure 6 shows that even the coasting beam may be developing a collective enhancement
above 0.2 mA. The plasma shows new features at beam currents above 0.5 mA which
are not included in the above data sample, including a step drop in radius at a current
between 0.5 and 1 mA, accompanied by fluctuations in plasma power demand
(turbulence?) and sensitivity to details of storage ring setup. Plasma has been
maintained with coasting beams up to 2.5 mA, with luminosity (beam particles/s X
plasma electrons/cm?) above 1025 cm2 s-1.  However the stability and controllability
are less satisfactory than in the region beolw 0.5 mA.

FUTURE DIRECTIONS

The observed transfer of both energy and angular momentum from a fast beam to a
trapped nonneutral electron plasma may be counteracted to some extent. An electron
plasma may tolerate power input by operating at higher trap magnetic fields, where
radiation cooling is faster. A superconducting solenoid trap of 1.75 T is being
commissioned which will raise the cooling rate by a factor of fifty. Magnetic and UHV
components are completed, and the electrode structure is being machined.

The torque input may be better tolerated by exploiting resonant enhancement of the
torque associated with the launching of helical charge density waves (4). For study of
waves of the form cos (mg0-m,mz/L) with mg, m; = 1, 2, a newly-constructed swept
rotating signal source and frequency-agile phase sensitive detector are allowing a
systematic exploration of the plasma response in transmission mode. Figure 6 shows a
representative sweep in dipole mode. Control and calibration of torque input to the
plasma from study of such modes is just beginning.
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FIGURE 7. A rotating electric ficld created by eight sector plates at one end of a long electron plasma
is swept in frequency from 110 5 MHz in 0.1 s. Near the other end of the plasma, two opposite plates
sense a dipole mode excitation in phase with the swept "motor" signal. Note the two narrow pcaks at
2.3 and 4.8 MHz where the plasma transmits strongly (my = 1, 2?). A strong mg = 0 mode at 4.2 MHz

is invisible. Overall signal gain in the "agile multiplier" chain is about +100 dB.
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The Crystron: An Induction Accelerator
for the Production of Crystalline Beams

R. Bliimel

Department of Physics, Wesleyan University, Middletown, CT 06459-0155

Abstract. The crystron, a combination of a quadrupole ring trap and a betatron,
is a cyclic accelerator for the production and acceleration of crystalline beams. Re-
alistic molecular dynamics calculations with up to 12,000 2*Mg™" ions show that the
acceleration process in the crystron is stable. Suppression of synchrotron radiation of
crystalline beams is discussed.

INTRODUCTION

In 1985 Schiffer and Kienle suggested to produce crystalline beams of charged
particles [1]. Since then the production of crystalline beams has been persued both
experimentally and theoretically at many laboratories (see, e.g., [2-6]). Strong ex-
perimental indications of ordered heavy ion chains have recently been reported by
an experimental collaboration based at GSI in Darmstadt [6]. Based on molecular
dynamics calculations Hasse was able to confirm that the ions in the GSI exper-
iments are indeed longitudinally ordered, but may still be hot in the transverse
direction [7]. Due to shear forces [8] it may be difficult to produce crystalline
beams with nonzero width in the transverse direction (3D crystals) in existing par-
ticle accelerators and storage rings. The crystron, a combination of a quadrupole
ring trap [9-11] and a betatron [12] avoids the problem with shear forces. Detailed
molecular dynamics calculations of ion chains and some simple 3D crystals show
[13] that the crystron is indeed able to produce fast crystalline beams. Crystalline
beams are interesting for many reasons [2]. Among others they are the ultimate
examples of high quality, high brilliance beams. Moreover, crystalline beams show
interesting radiation characteristics, for instance a suppression effect [14,15] that
may be of technical interest for the construction of smaller cyclic accelerators.

THE CRYSTRON

Figure 1 shows a schematic sketch of the crystron. It consists of a betatron (B)
[12] and a quadrupole ring trap (T) [9-11]. The ring trap is a quadrupole mass
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filter [16] bent into the shape of a torus. It is located in the gap G between the poles
P and Q of a betatron magnet with induction coil C. The air gap A in the central
post of the crystron may be used to satisfy the betatron condition {12]. Production
and acceleration of a crystalline beam in the crystron proceeds according to the
following four steps:

1. The betatron is switched off, i.e., the current in the coil C is zero. The
quadrupole ring trap is switched on and loaded with charged particles. The
particles accumulate in the ring trap and form a hot nonneutral plasma.

2. A cooling mechanism is now applied to the hot plasma in order to reduce its
temperature and to crystallize the particles. The experimental feasibility of
this step has already been demonstrated experimentally [9,10].

3. As soon as crystallization is achieved, the cooling devices are switched off.
This step does not destroy the crystal, since rf heating in the crystalline state
vanishes [17].

4. The current in the coil C is now ramped up producing an induced azimuthally
directed electric field that accelerates the Coulomb crystal in the trap T.

The above four steps have been carefully modelled numerically with detailed
classical molecular dynamics calculations of up to 1,000 2Mg™* ions [13]. It was
shown that the acceleration stage in the crystron is stable, not increasing the initial
temperature of the crystal. Although the main focus of [13] was the acceleration
of crystalline chains of ions, a few runs with more complicated 3D crystals (mainly
zig-zags and helices) showed that the acceleration stage is also stable for 3D crys-
tals. This is so, because there are no shear forces in a circular accelerator such as
the crystron. Because the crystron is based on the principle of a circular induction
accelerator, there is also no accelerator lattice to consider, which may heat and

FIGURE 1. Schematic sketch of the crystron.
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shear the crystal. This explains the excellent performace of the crystron for accel-
erating Coulomb crystals. Recently, a run with 12,000 24Mg* ions confirmed the
results of the earlier 1,000 ion calculations. The 12,000-ion run already models a
realistic situation, since for an ion spacing of ~ 30 pm used in the calculations, the
corresponding crystron has a diameter of 11.5cm, the exact dimension of existing
quadrupole ring traps [9-11].

SUPPRESSION OF SYNCHROTRON RADIATION

More than half a century ago Schiff [18] discussed the suppression of synchrotron
radiation of crystalline beams for enhancing the performance of particle accelera-
tors. In Schiff’s time, no mechanism was known to produce and maintain crystalline
beams. With the advent of powerful cooling schemes such as electron and laser cool-
ing [2] this situation has changed dramatically. Thus it may be time to re-evaluate
Schiff’s proposal and perhaps apply it for the construction of more efficient particle
accelerators.

Consider a point charge ¢ in a circular orbit of radius r with angular frequency w
and corresponding angular speed v = wr. The total emitted electromagnetic power
of the point charge is given by [19]

2 4,4
py - Be
6mey T2 (1)

where 8 = v/c, v = 1/4/1 — B? and c is the velocity of light. Due to the periodicity
of the motion, the charge radiates into modes with frequencies w, = nw with partial
powers P{Y. Thus the total emitted power (1) can be written as a sum of the partial
powers P{1) according to

PW = f: P, (2)
n=1
An explicit expression for the partial powers is derived, e.g., in [20] and given by
2 B
p — g°cB 2.2, 71 (9 _2/ (2
n 271'60"}’27'2 :3 yn 2n( nIB) n o Jo ( nf)df ) (3)

where J, are the ordinary Bessel functions of the first kind [21]. Let us now consider
the case of N charged particles in a circular orbit of radius r. If the particles are
randomly distributed on the orbit, the total emitted power is

o0
N .
Pr(am)iom = NP(l) =N 2 Pr(zl)v (4)
n=1
as expected. If, however, the particles are equi-spaced along the circular orbit, i.e.,A
if they form a crystalline chain, then the total emitted power of the N particles is
given by [19]

N oo
Pc(rygtal = N2 Z Pr(nl)N (5)
m=1
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If (asymptotically) Pn(l) is a rapidly decaying function of n, as it actually turns
out to be in both the relativistic and the nonrelativistic regimes, then the emitted
electromagnetic radiation of the crystalline beam may be considerably suppressed
with respect to the radiation of a disordered beam. We define

Pc(r];!,s)tal
Q= —Fr— (6)
Pr(an()iom
Enhancement of radiation corresponds to o > 1, suppression to a < 1. In order to
get a feeling for the behavior of @, let us consider a model for P{! that reflects the
actual behavior of (3) very well:

P = Py exp(—An), (7)
where ) is a real number. For this model we have

2 oo (1) - -
o= N Zm:] m-N — Nexp[—)\(N— 1)] 1 exp( A)

Ny PO < Nexp[—A(N = 1))].

1 —exp(—=AN) —
(8)

The right hand side of (8) is is a simple expression that is known to be less than 1
from some N = Ny(A) on. Therefore, for a chain of charged particles, suppression
of synchrotron radiation always occurs if the length of the chain exceeds Ny()).

DISCUSSION

So far only an ideal version of the crystron was studied using realistic molecular
dynamics simulations. In order to show that the crystron can successfully be built
and operated as an actual machine in the laboratory, several problems have to be
addressed. An actual machine, e.g., will not have the ideal homogeneous fields
assumed in the molecular dynamics calculations [13]. Fortunately this problem can
be studied in detail, again using molecular dynamics simulations, but this time
introducing small field distortions. A more fundamental problem is the induction
of azimuthal and eddy currents in the ring trap’s electrodes while ramping up the
magnetic field in the crystron. While the azimuthal current can be eliminated by a
gap in the trap’s electrodes, eddy currents remain a problem. Another problem con-
cerns the emission of photons. Although the emission of electromagnetic radiation
by the circulating crystal should be suppressed, some photons will still be emitted.
This causes recoil momentum to be transferred to the particles of the crystalline
beam and may heat the beam to the point where it melts or disrupts. Fortunately
this process can be studied in detail, again using molecular dynamics calculations.
Such calculations have been done before in a similar context [22]. Especially at low
beam temperatures, quantum effects, too, may become important. This, however,
is expected to be of relevance only for crystalline electron or positron beams.




SUMMARY AND CONCLUSIONS

Based on detailed microscopic molecular dynamics calculations of up to 12,000
24Mg* ions it was shown that an ideal version of the crystron is capable of producing
fast crystalline beams. Questions concerning performance and stability of possible
laboratory implementations of the crystron are currently under active investiga-
tion. The crystron is an ideal testing ground for the investigation of the radiation
characteristics of one- and three-dimensional crystalline beams. The crystron may
also be a first step towards more efficient circular accelerators that make full use of
the phenomenon of the suppression of synchrotron radiation of crystalline beams.
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SECTION 6

STRONGLY COUPLED PLASMAS




Crystalline Order in Strongly Coupled
Ion Plasmas®

T. B. Mitchell, J. J. Bollinger, X.-P. Huang,! W. M. Itano, J. N.
Tan,! B. M. Jelenkovi¢, and D. J. Wineland

Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO
80303

Abstract. Laser-cooled trapped ions can be strongly coupled and form crystalline
states. This manuscript reviews experimental studies which measure the spatial cor-
relations of Bet ion crystals formed in Penning traps. Both Bragg scattering of the
cooling-laser light and spatial imaging of the laser-induced ion fluorescence are used
to measure these correlations. In spherical plasmas with more than 2 x 10% ions,
body-centered-cubic (bee) crystals, the predicted bulk structure, are the only type of
crystals observed. The orientation of the jon crystals can be phase-locked to a rotat-
ing electric-field perturbation. With this “rotating wall” technique and stroboscopic
detection, images of individual ions in a Penning trap are obtained. The rotating wall
technique also provides a precise control of the time-dilation shift due to the plasma
rotation, which is important for Penning trap frequency standards.

INTRODUCTION

This manuscript summarizes recent progress on the study of strongly coupled ion
plasmas in Penning traps. It is similar to the review in the conference proceedings
of Ref. [1] and contains more background material on Bragg-scattering results than
Ref. [2], which focuses on results obtained from real images of the ion crystals.

Trapped ions are a good example of a one-component plasma (OCP). An OCP
consists of a single charged species immersed in a neutralizing background {3]. In
an ion trap, the trapping fields provide the neutralizing background [4]. Examples
of OCPs include such diverse systems as the outer crust of neutron stars [5] and
electrons on the surface of liquid helium [6]. The thermodynamic properties of the

classical OCP of infinite spatial extent are determined by its Coulomb coupling
constant {3]
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which is a measure of the ratio of the Coulomb potential energy of ncarest neighbor
ions to the kinetic energy per ion. Here, ¢, is the permittivity of the vacuum, e
is the charge of an ion, kp is Boltzmann’s constant, T is the temperature, and
aws is the Wigner-Seitz radius, defined by 47 (aws)?/3 = 1/n,, where n, is the ion
density. For low temperature ions in a trap, n, equals the equivalent neutralizing
background density provided by the trapping fields. Plasmas with I’ > 1 are called
strongly coupled. The onset of fluid-like behavior is predicted at ' ~ 2 [3], and
a phase transition to a body-centered-cubic (bcc) lattice is predicted at I' ~ 170
[3,7]. From a theoretical perspective, the strongly coupled OCP has been used as
a paradigm for condensed matter for decades. However, only recently has it been
rcalized in the laboratory [8].

Experimentally, freezing of small numbers (N < 50) of laser-cooled atomic ions
into Coulomb clusters was first observed in Paul traps [9-11]. With larger numbers
of trapped ions, concentric shell structures werc observed directly in Penning [12]
and linear Paul [13,14] traps. The linear Paul traps provided strong confinement in
the two dimensions perpendicular to the trap axis and very weak confinement along
the trap axis. This resulted in cylindrically shaped plasmas whose axial lengths are
large compared to their cylindrical diameters. Cylindrical-shell crystals which are
periodic with distance along the trap axis were observed. The diameter of these
crystals was limited to ~10 aws in Ref. [13] and ~30 aws in Ref. [14], presumably
due to rf heating [15] which is produced by the time-dependent trapping ficlds
and increases with the plasma diameter. These plasma diameters appear to be too
small to observe the 3-D periodic crystals predicted for the infinite, strongly coupled
OCP. Strong coupling and crystallization have also been observed with particles
interacting through a screened Coulomb potential. Examples include dusty plasma
crystals [16] and colloidal suspensions [17,18].

Because Penning traps use static fields to confine charged particles, there is no rf
heating. This has enabled ion plasmas which are large in all three dimensions to be
laser-cooled. For example, we have laser-cooled ~ 10® Be* ions in an approximately
spherical plasma with diameter ~ 200aws. With these large ion plasmas we have
used Bragg scattering of the cooling laser light to detect the formation of bec
crystals [19,20], the predicted state for a bulk OCP with T' > 170. In addition,
we have studied the spatial correlations in planar, lens-shaped plasmas with axial
thickness S 10aws. These plasmas consist of extended, two dimensionally periodic
lattice planes. The importance of the plasma boundary in this case results in
different crystalline structures depending on the details of the plasma shape.

A potential drawback of the Penning trap versus the rf trap is that the ions rotate
about the trap magnetic field, and this has previously prevented the imaging of the
ion crystals as done in Paul traps. This is because the rotation, created by the ExB
drift due to the radial electric and the trap magnetic ficlds is, in general, not stable.
For example, fluctuations in the plasma density or shape produce fluctuations in
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FIGURE 1. Schematic view of the cylindrical trap with real space imaging optics for the
side-view camera and Bragg diffraction detection system for the axial cooling beam. The size
of the plasma is exaggerated. Cross section of the rotating quadrupole field (in the x-y plane) is
shown in the insert. From Ref. [21].

the ion space-charge fields which change the plasma rotation. However, we are able
to phase-lock the rotation of the laser-cooled ion crystals to a rotating electric-field
perturbation [21,22]. The success of this “rotating wall” technique enables us to
strobe the cameras recording the ion fluorescence synchronously with the plasma
rotation and obtain images of individual ions in the plasma crystals [23].

Figure 1 is a schematic of the cylindrical Penning trap we use to confine *Be*
jons. The trap consists of a 127 mm long vertical stack of cylindrical electrodes
with an inner diameter of 40.6 mm, enclosed in a room temperature, 107® Pa
vacuum chamber. The uniform magnetic field B, = 4.46 T is aligned parallel to
the trap axis within 0.01° and produces a *Be* cyclotron frequency Q = 27 x 7.61
MHz. A quadratic, axially symmetric potential (mw?/2e)[z* — r?/2] is generated
near the trap center by biasing the central electrodes to a negative voltage —V,.
At V, = 1 kV, the single-particle axial frequency w, = 27 x 799 kHz and the
magnetron E x B drift frequency wn = 27 x 42.2 kHz. The trapped Bet ions
are Doppler laser-cooled by two 313 nm laser beams. The principal cooling beam
(waist diameter ~ 0.5 mm, power ~ 50 uW) is directed parallel to B,. A second,
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typically weaker cooling beam with a much smaller waist (~ 0.08 mm) is directed
perpendicularly to B, (not shown in Fig. 1). This beam can also be uscd to vary
the plasma rotation frequency by applying a torque with radiation pressure. With
this configuration, ion temperatures close to the 0.5 mK Doppler laser-cooling limit
are presumably achieved. However, experimentally we have placed only a rough 10
mK upper bound on the ion temperature [24]. For a typical value of n, = 4 x 108
cm™3, this implies I' > 200.

Two types of imaging detectors were used. One is a charge-coupled-device (CCD)
camera coupled to an electronically gateable image intensifier. The other is an
imaging photomultiplier tube based on a microchannel-plate electron multiplier and
a multielectrode resistive anode for position sensing. For each detected photon, the
position coordinates are derived from the current pulses collected by the different
electrodes attached to the resistive anode. This camera therefore provides the
position and time of each detected photon. However, in order to avoid saturation,
we placed up to 20 dB of attenuation in front of this camera to lower the detected
photon counting rate to less than ~ 300 kHz.

In thermal equilibrium, the trapped ion plasma rotales without shear at a fre-
quency wr, where w, < w, < @ — w,, [25,26]. For the low temperature work
described here, the ion density is constant and given by n, = 2¢,mw, (Q — w, )/ €2
With a quadratic trapping potential the plasma has the simple shape of a spheroid,
22/22 + r?[r? = 1, where the aspect tatio @ = z,/r, depends on w, [24,26]. This
is because the radial binding force of the trap is determined by the Lorentz force
due to the plasma’s rotation through the magnetic field. Thus low w, results in a
lenticular plasma (an oblate spheroid) with large radius. As w, increases, 7, shrinks
and z, grows, resulting in an increasing a. However, large w, (w, > /2) produces
a large centrifugal acceleration which opposes the Lorentz force, and lenticular plas-
mas are once again obtained for w, ~ @ —w,,. In our work, torques from a lascr or
a rotating electric field control w, and therefore the plasma density and shape. The
plasma shape is observed by imaging the ion fluorescence scattered perpendicularly
to B, with an /5 objective. (See Fig. 1.) All possible values of w, from w, to
0 — wn, have been accessed using both methods of applying a torque [22,27,28].
Azimuthally segmented compensation electrodes located between the main trap
electrodes are used to apply the rotating electric-field perturbation. Both rotating
quadrupole (see inset in Fig. 1) and dipole fields (not shown in Fig. 1) have been
used to control w,. Below we explain how the rotating quadrupole field provides
precise control of w,.

BRAGG SCATTERING

- BCC Crystals

An infinite OCP with T’ 2 170 is predicted to form a bcc lattice. However, the
bulk energies per ion of the face-centered-cubic (fcc) and hexagonal-close-packed
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FIGURE 2. Bragg diffraction patterns from a plasma phase locked to a rotating quadrupole
field (w, = 27 x 140 kHz, n, ~ 4.26 x 10® cm™2, o &~ 1.1). (a) 1 s time-averaged pattern. The
long rectangular shadow (highlighted by solid lines) is from the deflector for the incident beam;
four line shadows (highlighted by dashed lines) that form a square are due to a wire mesh at
the exit window of the vacuum chamber. The small open circle near the center of the figure
marks the position of the undeflected laser beam. (b) Time-resolved pattern obtained nearly
simultaneously with (a) by strobing the camera with the rotating field (integration time a 5 s).
A spot is predicted at each intersection of the rectangular grid lines for a bee crystal with a [110]
axis aligned with the laser beam. The grid spacings were determined from the n, calculated from
w, and are not fitted. From Ref. [22].

(hep) lattices differ very little from bec (< 107*) [29]. Because some of the fcc
and hcp planes have lower surface energies than any of the bee planes, a boundary
can have a strong effect on the preferred lattice structure. One calculation [29]
estimates that the plasma may need to be 2 100aws across its smallest dimension
to exhibit bulk behavior. For a spherical plasma this corresponds to ~ 10° ions.
We used Bragg scattering to measure the spatial correlations of approximately
spherical plasmas with N > 2 x 10° trapped Be* ions [19,20]. The cooling-laser
beam directed along the trap axis was used for Bragg scattering as indicated in Fig.
1. First the plasma shape was set to be approximately spherical. (In early exper-
iments this was done with the perpendicular laser beam; more recent experiments
used the rotating wall.) The parallel laser beam was then tuned approximately
half a linewidth below resonance, and a Bragg-scattering pattern recorded (~1-30
s integration). The plasma was then heated and recooled, and another Bragg-
scattering pattern was recorded. Because the 313 nm wavelength of the cooling
laser is small compared to the inter-ion separation (~10-20 pum), Bragg scattering
occurs in the forward (few degree) scattering direction. In order for a diffracted
beam to form, the incident and scattered wave vectors k; and k, must differ by
a reciprocal lattice vector (Laue condition) [30]. In a typical x-ray crystal diffrac-
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FIGURE 3. Histogram showing the numbers (not intensities) of peaks observed as a function
of ¢+ aws (defined in the text) for 30 time-averaged Bragg scattering patterns obtained on two
different spherical plasmas with N > 2 x 105, The dotted lines show the expected peak positions

for a bee crystal, normalized to the center of gravity of the peak at A (corresponding to Bragg
reflections off {110} planes). From Ref. [20].

tion casc, satisfying the Laue condition for many reciprocal lattice vectors requires
that the incident radiation have a continuous range of wavelengths. Here the Laue
condition is relaxed because of the small size of the crystal, so a crystalline Bragg
diffraction pattern is frequently obtained even with monochromatic radiation.

Figure 2(a) shows a time-averaged diffraction pattern obtained on a spherical
plasma with N ~ 7.5 x 10°. The multiple concentric rings are due to Bragg
scattering off different planes of a crystal. A concentric ring rather than a dot
pattern is observed because the crystal was rotating about the laser beam. In gen-
eral, many different patterns were observed, corresponding to Bragg scattering off
crystals with different orientations. Figure 3 summarizes the analysis of approxi-
mately 30 time-averaged patterns obtained on two different spherical plasmas with
N > 2 x 105, It shows the number of Bragg peaks as a function of the momentum
transfer ¢ =| k; — k; |= 2k sin(0c01¢/2) (= kbsars for Oscary < 1), where k = 27 /X is
the laser wave number and 8., is the scattering angle. The density dependence
of the Bragg peak positions is removed by multiplying ¢ by aws, which was deter-
mined from w,. The positions of the peaks agree with thosc calculated for a bce
lattice, within the 2.5% uncertainty of the angular calibration. They disagree by
about 10% with the values calculated for an fcc lattice. The ratios of the peak
positions of the first five peaks agree within about 1% with the calculated ratios
for a bec lattice. This provides strong evidence for the formation of bee crystals in
spherical plasmas with N > 2 x 10° ions. This result is significant because it is the
first evidence for bulk behavior in a strongly coupled OCP in the laboratory.
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Rotating Wall

By strobing the camera recording the Bragg-scattering pattern synchronously
with the plasma rotation, we should be able to recover a dot pattern from the
time-averaged concentric ring pattern in Fig. 2(a). Initially we used the time
dependence of the Bragg-scattered light to sense the phase of the plasma rotation
[20,31). More recently we used a rotating electric-field perturbation to phase-lock
the ion plasma rotation [21,22]. ’

Consider the rotating quadrupolar perturbation shown in the inset of Fig. 1.
This z-independent perturbation produces a small distortion in the shape of the
spheroidal plasma. In particular, the plasma acquires a small elliptical cross section
normal to the z-axis. (In our work the distortion created by the rotating quadrupole
field was typically less than 1% of the plasma diameter.) The elliptical boundary
rotates at the applied rotating wall frequency w,,. An ion near the plasma boundary
experiences a torque due to this rotating boundary. If the ion is rotating slower than
wa, the torque will speed it up. If it is rotating faster than w,, the torque will slow
it down. Through viscous effects, this torque is transmitted to the plasma interior.
Therefore, if other external torques are small, the rotating wall perturbation will
make w, equal wy,. Crystallized plasmas behave more like a solid than a liquid or
gas. Because the viscosity is high, the whole plasma tends to rotate rigidly with its
boundary. In particular, the orientation of the ion crystals can phase-lock to the
rotating quadrupolar perturbation if the difference between w. and w,, is small.

To check for phase-locked control of w,, we strobed the camera recording the
Bragg-scattering pattern in Fig. 2(a) with the synthesizer used to generate the
rotating wall signal. Specifically, once each 27 /wy, period, the rotating wall signal
gated the camera on for a period < 0.02(27 /w,,). The resulting Laue dot pattern in
Fig. 2(b) shows that the plasma rotation was phase-locked to the rotating electric-
field perturbation. The dot pattern provides detailed information on the number
and orientation of the crystals which contributed to the Bragg-scattering signal.
For example, the pattern in Fig. 2(b) was due to a single bcc crystal with a [110]
axis aligned along the laser beam. For phase-locked operation of the rotating wall,
other external torques must be small. For example, a misalignment of the trap
magnetic field with the trap-electrode symmetry axis of > 0.01° prevented phase-
locked control of the plasma rotation. In our work, alignment to < 0.003° was
obtained by minimizing the excitation of zero-frequency plasma modes [27,28].

In addition to the rotating quadrupole perturbation, phase-locked control was
also achieved with a uniform rotating electric field (a “dipole” field). In fact under
many circumstances a uniform oscillating field worked equally well. In these cases
the co-rotating component of the oscillating field controlled the plasma rotation,
while the perturbing effects due to the counter-rotating component were minimal.
For further discussion, see Ref. {22].
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FIGURE 4. Real-space images of an N ~ 1.8 x 10° ion plasma phase-locked with an oscillating
dipole field at w, = 2m x 120 kHz. (a) Timec-averaged side-view image showing the overall
plasma shape. The bright line of fluorescence through the plasma center is due to a laser beam
directed perpendicularly to B,. The plasma shape is approximately spherical. The presence of
heavier-mass ions, which centrifugally separate from the °Bet ions, produces the straight vertical

« 1.2 mm

boundaries in the image. (b) Strobed top-view image, obtained simultaneously with (a), showing
the presence of a bee crystal in the plasma center. The distance scales in (a) and (b) are different,
as noted.

REAL-SPACE IMAGES

Bragg scattering measures the Fourier transform of the spatial correlations of
the trapped ions. It provides a picture of these correlations in reciprocal-lattice
space. With phase-locked control of w;, real-space imaging of individual ions in a
Penning trap becomes possible. To obtain real-space images with high resolution,
we replaced the Bragg scattering optics (see Fig. 1) with imaging optics, starting
with an f/2 objective, which formed a real, top-view image of the ion plasma. The
combined resolution limit of the optics and camera was less than 5 um near the
optimal object plane of the f/2 objective. This is less than the ~10 um resolution
limit required to resolve individual ions. However, the depth of field of an f/2
objective for 10 pm resolution is ~80 ym. For lenticular plasmas with 2z, < 80
pm, all of the ions within the plasma were resolvable. For plasmas with 2z, > 80
pum, the cooling-laser beam directed perpendicularly to B, was used to illuminate
a section of the plasma within the depth of field.

Figure 4 shows side-view and top-view images of an approximately spherical
plasma with N ~ 1.8 x 10°. The fluorescence from the perpendicular laser beam
used to highlight a small region of the plasma is clearly visible. In the top-view
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FIGURE 5. Strobed top-view images of a small (N ~ 300 Be*) ion plasma phase-locked with a
rotating dipole field at (a) w, = 27 x 65.7 kHz and (b) 66.5 kHz. Below are unstrobed side-views
showing the axial lattice planes. Heavier-mass ions are located outside the °Bet ions.

image a square grid of dots is observed near the plasma center. The measured
spacing between nearest neighbor dots is 12.8 + 0.3 um, in good agreement with
the 12.5 pm spacing expected for viewing along a [100] axis of a bcc crystal with
density determined by the w, set by the rotating field. Real-space imaging provides
direct information on the location and size of the crystals. In Fig. 4 the crystal
was located in the radial center of the plasma and was at least 230 um across, or
at least 1/4 of the plasma diameter.

For lenticular plasmas with 2z, < 80 um, all of the ions within the plasma are
resolved without the use of the perpendicular laser beam. Lenticular plasmas are
obtained with w, slightly greater than wy,. For small plasmas (N < 2000 ions)
we were able to use the rotating-dipole electric field to lower w, and obtain a
single plane while maintaining long-range order in the top-view images. Figure
5(a) shows top- and side-view images of such a plasma. Near the plasma center a
2-D hexagonal lattice is observed, the preferred lattice for a 2-D system. Here each
dot is the image of an individual ion.

Starting with a single plane like that shown in Fig. 5(a), we studied the structural
phase transitions that occur as w, is increased [23]. With increasing w;, the radial
confining force of the Penning trap increases, which decreases r,. At a particular
point, there is a structural phase transition near the plasma center from a single,
hexagonal lattice plane to two lattice planes where the ions form a square grid in
each plane, as shown in Fig. 5(b). Further increases in w, increase the number of
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ions per unit area of each plane as well as the spacing betwecen the planes. During
this process the square lattice planes smoothly change into rhombic lattice planes
and eventually there is a sudden transition to hexagonal lattice planes. Further
increases in w, eventually produce a structural transition to three square lattice
planes, and the basic pattern repcats.

The structure of the crystallized ions depends sensitively on the projected areal
density ¢ of the plasma. The side- and top-view images were analyzed to char-
acterize the phase structure. Within a layer, the structural order is characterized
by the primitive vectors a; and a, (which are observed to be equal in magnitude)
and the angle 6 (< 90°) between them. The interlayer order is characterized by
the axial positions z, of the n lattice planes (measured by the side-view camera)
and the interlayer displacement vector ¢,, between layers 1 and n. Hence, the equi-
librium positions in the (z,y) plane of ions in axial planes 1 and n are given by
R; = ia; + jaz and R, = 1a; + jaz + c,, where 1,7 are integers. Three different
types of intralayer ordering are observed: hexagonal (0 = 60°), square (§ = 90°)
and rhombic (90° > § > 65°). The observations were compared to the results
from Dubin [23], who performed an analytic calculation of the encrgies of lattice
planes which are infinite and homogeneous in the (z,y) direction but are confined
in the axial direction by a harmonic external electrostatic confinement potential
¢e = 1/2(m/e)w?2?. Since this potential is identical to the confinement poten-
tial of a Penning trap as seen in the rotating frame in thec o — 0 planar limit,
the minimum-energy phase structures predicted by the theory should match the
structures observed in the central regions of the oblate plasmas of the experiments.

Iigure 6 displays the agreement between theory and experiment for the inter-
layer quantities, with measurements taken on diflerent plasmas with N < 10%.
Lengths have been normalized by aysp = (3¢*/4megmw?)/? = 10.7 um, which is
the Wigner-Seitz radius in the planar limit. As the central arcal density is increased
the lattice planes move further apart axially in order to match their average density
to the ncutralizing background. Eventually it becomes energetically favorable to
form an additional lattice plane. The symbols indicate whether the lattices had an
interlattice displacement vector ¢, characteristic of the hexagonal phases (triangles)
or the square and rhombic phases (squares).

Figure 7 displays the agreement between experiment and theory for the depen-
dence of the angle § (between the primitive vectors) on central areal charge density
o. The trend is that when a new lattice plane is formed, # changes discontinuously
from = 60° to a higher value. As the central areal density of the crystal is fur-
ther increased, § smoothly decreases to ~ 65° until there is a second discontinuous
transition to a hexagonal structure. This latter transition has been predicted [32]
to become continuous in liquid (I' < 80) bilayer systems. The lines indicate the
minimum energy structures predicted by the 2D theory.

2
[*A]
t



= [ . i
2 a2} M“‘/' ]
g I L
e | : ]
s 1F .
g L ]
& M e ]
s ]
[% I DDULUD.DD\ J
~ L fadssisioninil, SV SR E
a1 F .
N %

S~ o -
N -2

s _.—-c2=(a1+az)/3 N h

05 1.0 1.5 20

2 .
o a, ., (central areal charge density)

FIGURE 6. Interlayer structure (plane axial positions and displacement vectors) as a function
of normalized areal charge density. The lines are the predictions of theory, and the symbols are
experimental measurements.
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tive error bars are included with some of the measurements.
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DISCUSSION

With Bragg scattering and spatial imaging, we have mcasured the correlations
in both spherical and highly oblate strongly coupled °Bet ion plasmas. The planar
geometry permits a detailed comparison with theoretical calculations. We have
measured the preferred lattice structures for up to five lattice planes in lenticular
plasmas and obtain good agreement with theory. Ions in a trap have been proposed
as a register for a quantum computer [33]. Work in this area has focussed on a
string of a few ions in a linear Paul trap [34]. A single lattice plane of ions as in Fig.
5 could provide a 2-D geometry of trapped ions for studies of quantum computing
or entangled quantum states.

In spherical plasmas with more than 2 x 10° ions, we have observed the formation
of bee crystals, the predicted state for the infinite strongly coupled OCP. The
crystals occupied the inner quarter of the plasma diameter. Outside the crystal
there was a complicated transition to shell structure. In this system we have not
observed the thermodynamic liquid-solid phase transition predicted for the bulk
OCP. The phase transition may take place in the present system, but we have
experimentally missed detecting it. Or, possibly larger crystals (for example, where
the number of ions in the crystal is large compared to the number of ions in the
shells) may be required in order for a sharp phase transition to be exhibited.

We have observed structures for which we do not have a good theoretical un-
derstanding. Figure 8(a) shows an approximate fivefold Bragg-scattering pattern
that was observed a number of times under different experimental circumstances. A
fivefold Bragg-scattering pattern is characteristic of a quasi-crystal. However, more
sets of dots would be present in a truc quasi-crystalline Bragg-scattering pattern.
We now think that the fivefold Bragg-scattering pattern of Fig. 8(a) is due to a
structure like that shown in Fig. 8(b). Figure 8(b) is a top-view image of a lentic-
ular plasma which consisted of four horizontal planes. Even though it is difficult
to distinguish individual ions in this figure, it is possible to see that there are five
distinct regions where the ions resided in vertical planes. The planes from these
different regions form a five-sided structure that would produce a Bragg scattering
pattern like Fig. 8(a). Once formed, this fivefold structure was stable.

In addition to enhancing studies of Coulomb crystals, the phase-locked control
of w, has improved the prospects of a microwave frequency standard based on a
hyperfine-Zeeman transition of ions stored in a Penning trap. This is because the
time-dilation shift due to the plasma rotation is one of the largest known systematic
shifts in such a standard. Reference [35] discusscs the potential frequency stability
and accuracy of a microwave frequency standard based on 10° trapped ions. For
ions such as *"Zn* and *'Hg", fractional frequency stabilities S 1071/71/2 with
time-dilation shifts due to the plasma rotation of ~fewx10~!® are possible. Here 7
is the measurement time in seconds. With phase-locked operation of the rotating
wall, we think it should be possible to stabilize and evaluate the rotational time-
dilation shift within 1%. Therefore the inaccuracy due to this shift would contribute
a few parts in 10717,
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FIGURE 8. Fivefold Bragg scattering and real-space patterns obtained by strobing the intensi-
fied CCD camera synchronously with the rotating electric field perturbation. (a) Bragg scattering
pattern obtained on an N ~ 1.2 x 10% jon plasma phase-locked with a rotating dipole field at
w, = 27 x 166.84 kHz. Here V, = 500 V and a = 2.6. (b) Real-space image of a lenticular plasma
consisting of 4 horizontal planes in the plasma center. The rotating dipole field was used to set
wy = 27 x 74.35 kHz.
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Abstract. We present the first experiment to observe an ultracold neutral plasma.
The plasma, which was created by photoionization of laser cooled atoms, has charge
densities as high as 2 x 10%cm™2, and the temperatures of electrons and ions are as
low as 100mK and 10 uK, respectively. The plasma has a lifetime of about 100 s,
much longer than predicted by recombination rates. When the laser that excites the
atomns is tuned below the ionization limit we create a sample of very highly excited
cold Rydberg atoms. At our highest densities and during a time of a few microseconds,

in which the Rydberg atoms are essentially stationary, the ensemble evolves towards
an unbound plasma-like state.

INTRODUCTION

Creating a neutral plasma at very low temperatures has for many years been
an experimental challenge. By photoionizing a sample of laser cooled atoms we
obtain a plasma that has electron temperatures as low as T, = 100mK and ion
temperatures as low as T; = 10uK. The density of the ultracold plasma is as
high as 2 x 10° cm™3. This new plasma is well suited to investigate and perhaps
answer questions that are also important for nonneutral plasmas. The three-body
recombination rate at low temperatures, for instance, is of great relevance for the
success of the various antihydrogen projects underway [1]. Also, for both electrons
and ions, the Coulomb interaction energy between nearest neighbours exceeds the
the initial thermal energy of the particles.

This paper is organized as follows: In part I we introduce the atomic system
and describe the experimental setup. We then discuss the temporal sequence of
the experiment, and present the data. In section II, we develop a simple model
that explains the experimental results and we discuss a numerical simulation that
reproduces the data. The characteristics of the plasma are given in section III. The
plasma opens the way to a number of interesting new experiments, some of which
we shall briefly mention in section IV. We conclude by considering the possibility

CP498, Non-Neutral Plasma Physics III, edited by John J. Bollinger, et al.
© 1999 American Institute of Physics 1-56396-913-0/99/$15.00
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of obtaining such a cold plasma during a phase transition from a dense sample of
highly excited, cold Rydberg atoms. Preliminary experimental results are shown.

I THE ATOMIC SYSTEM AND THE
EXPERIMENTAL SETUP

The heart of our experiment is a sample of laser cooled metastable xenon atoms.
The metastable 6s5[3/2]; state in xenon has an optical dipole transition at 882nm
to the 6p[5/2]5 state. The lifetime of this lower state is 43s [2] and can therefore be
treated as the ground state for laser cooling. The metastable atoms are produced
in a gas discharge, and after deceleration using the Zeeman slowing technique, the
atoms are collected in a magneto-optical trap. Further cooling by optical molasses
reduces the temperature of the atoms to approximately 10 K. This slowing and
trapping sequence is described in detail in [3]. The number of cold atoms and the
size of the cloud can be determined by optical absorption imaging [4]. Typically we
prepare samples of a few million atoms at a density of 2 x 10'®cm™3. The spatial
distribution is Gaussian with a rms radius o ~ 200 gm.

To produce a plasma, a fraction of the cold atom sample is photoionized. The
photoionization process requires two photons. The first photon at 882nm is reso-
nant with the cooling transition. From the 6p[5/2]3 state a green photon at 514nm
excites the atoms to states at the ionization potential or above. In the experiment,
the infrared light is provided by a Ti:sapphire laser. The green light is supplied
by a pulsed dye laser, that is pumped by a pulsed frequency tripled Nd:YAG laser.
One laser pulse lasts approximately 10ns and carries about 1mJ of energy. We
can ionize up to 10% of the cold atoms, which corresponds to an ion (and also an
electron) density n = 2 x 10°cm™3. The number of atoms photoionized increases
linearly with the green laser intensity.

An externally applied electric field directs the electrons towards a single channel
electron multiplier and the ions towards a microchannel plate. The neutral atoms
fall free and are also recorded on the microchannel plates.

The temporal sequence of each experimental cycle is described below. First,
the atoms are laser cooled and a small electric field of approximately 5mV/cm
is applied. The atoms are then photoionized. Fig.1 shows the recorded electron
signal for four different green laser pulse energies. The photoionization occurs at
time ¢ = 0. A first pulse of electrons arrives at the detector after about 500 ns of
time of flight. If the green laser pulse has enough energy, the first peak develops
a tail and a second peak appears when the electric field is linearly increased a few
microseconds later. During this time the ions are essentially stationary. They arrive
and are detected on the microchannel plates about 300us after photoionization.

368



II MODEL AND NUMERICAL SIMULATION

The experimental data presented in Fig.l are explained by a simple physical
picture (see schematic in Fig.2). Immediately after photoionization, the charge
distribution is everywhere neutral but electrons and ions have acquired kinetic en-
ergy. This energy comes from the difference in energy AE between the energy of
the green photon and the ionization potential. Because of the large mass ratio be-
tween lons and electrons (2.4 x 10°) most of the energy AE is taken by the electrons
in the form of kinetic energy. Therefore the electron cloud begins expanding, and a
local charge imbalance builds up. The resulting internal electric field establishes a
Coulomb potential energy well for electrons. The depth of this well is proportional
to the number of electrons that have escaped. If the well never becomes deeper
than their initial kinetic energy, all electrons escape. This is the case for the upper-
most curve in Fig. 1. If many more atoms are photoionized, however, only an outer
shell of electrons escapes and the well becomes deep enough to trap the rest. Inside
the well, electrons will thermalize through collisions within 10 — 100 ns [6]. During
this energy redistribution process, some particles acquire energies larger than the
trap depth and will leave the well. This process of evaporation explains the tail of
the first peak in the electron signal. As electrons continue to leave the trap, the
depth of the potential well increases and eventually evaporation slows down. The
remaining electrons stay in the well until an external electric field overcomes the
trapping potential. They constitute the second peak that appears in Fig. 1.

According to the model described above, all electrons leave unless the potential
well created by the positive ions exeeds the kinetic energy (=~ AE) of the electrons.
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FIGURE 1. Electron time of flight signals. P}[llcttlionization occurs at ¢ = 0. The initial kinetic
energy of the electrons is AE/kp = 0.6 K. The uppermost curve corresponds to the lowest pulse
energy of the green laser (charged particle density n &~ 10° cm™2), and the bottom curve to the
the highest pulse energy (n ~ 107 cm~3). The data is averaged over 20 consecutive experimental
cycles. Also shown is the magnitude of the applied electric field.
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FIGURE 2. Schematic of the potential encrgy seen by a test electron when enough atoms arc
photoionized to result in trapping of elcctrons. At ¢y = 0 when photoionization occurs, the
sample is everywhere neutral. Because of their kinetic energy some electrons leave and the charge
imbalance yields a potential well. At t; = 10ns the depth of the well equals the initial kinetic
energy, trapping the remaining electrons. Electrons in the well thermalize, evaporation occurs
and the well depth increases. By {» & 1ps evaporation essentially stops. The bottom of the
well is flat due to Debye screening. The dashed line indicates the average kinetic energy of the
electrons.

Ior a given AFE this suggests a threshold number of photoions rcquired to trap
electrons. In the experiments, we can control the values of AE by varying the
green laser frequency. We found that the number of ions required to trap electrons
increases as the kinetic energy of the electrons increases. This threshold behaviour
appears clearly in a plot of the fraction of electrons trapped versus the number of
photoions created, and is shown in Fig. 3a.

The number N* of positive ions at the threshold can be readily estimated, con-
sidering that the spatial distribution of the charges is Gaussian. At threshold the
well depth of the potential energy of a cloud of N* ions equals the kinetic energy
of the electrons: N*Uy = AE. Here Uy is the depth of a potential well created
by a Gaussian spatial distribution of total charge equal to the elementary charge e
[5]. Over a large range of electron kinetic energics, this simple relation describes
well the onset of trapping for the data shown in Fig.3a. This behaviour becomes
more evident when the number of photoions produced is scaled by N*. As shown
in Fig. 3b all data fall on one curve, which is reproduced by a numerical integration
of the equations of motion [7].

In the model we have so far included the Coulomb interaction between electrons
and ions, and rethermalization of electrons in the well through collisions. The inter-
action between opposite charges explains the trapping of electrons by the positive
ion cloud. Evaporation of electrons from the well suggests that the temperature of
the electrons is T, < AE/kg, a result which is confirmed by the numerical simu-
lation. We have neglected collisons which lead to equipartition of energy between



'§1 0r AE/ kB (K) o | — numerical simulation .

Sosl - 32 y

S U.or A 3 _ -+ 4

ST e

o .

.g 06F /{ /f //l 1 d

o / L

- /

o 04] /,1 /o ,’( I ]

=] / / W /

S02¢f « Lo T :

Q

2 ‘Ll d @

=0 *1—-—‘-4—‘___4‘_.7_ ,____.._Jq. __._A:'.l‘_._u: ‘ ]
10° 10 10* 107! 10° 10 10

N N/N*

FIGURE 3. (a) Fraction of electrons trapped versus number of photoions created. Each curve
corresponds to a different green laser frequency, i.e. a different initial kinetic energy of the
electrons. (b) Same as (a) but the number of photoions is scaled by N*, the estimated threshold
for trapping. The line is the result of a numerical simulation. There is a scale uncertainty of
about 10% in determining the fraction of electrons trapped.

electrons and ions. For our experimental conditions, this process requires tens of
ms [6], a time much longer than the duration of the experiment. Also, collisions
between charged particles and neutral atoms may occur, but in the experiment we
see no evidence of such interactions. The mean free path for atom-charged particle
collisions is much larger than the size of the sample [8-10].

A complete model should also discuss the properties and the evolution of the
positive ions. Their initial temperature is easily estimated. For excitation close to
the ionization potential the energy imparted to the ions is negligible compared to
the initial kinetic energy of the atoms. Therefore the minimal initial temperature is
10 uK. For large values of AE the temperature is given by 4 x 1076 AE/kp, which
corresponds to 4mK for AE/kg = 1000K. Also, after the untrapped fraction of
electrons has escaped the charge imbalance leads to a Coulomb expansion of the
cloud. The potential well depth decreases and formerly trapped electrons will be
able to escape. This limits the time during which the electrons can be held in the
trap. However, the electrons escape most easily from the outer edges of the spatial
distribution;, and for N > N* the center of the cloud is still neutral, a behaviour
that also appears in the simulation. The presence of the electrons screens the
Coulomb interaction between ions causing the expansion of the cloud to be slowed
compared to that of a bare cloud of positive ions. For instance, a cloud of 5000
ions, initially with ¢ = 200 um reduces its well depth by a factor of two within
a few microseconds. Experimentally, we observed that a cloud of 5000 photoions
with only 10% charge imbalance holds half of the initially trapped electrons for
about 100 us.
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IIT THE ULTRACOLD PLASMA

Both the model and the simulation discussed above describe well the ionized gas
that we obtain by photoionizing the laser cooled atoms. At this point one may ask
whether this system is a plasma. Traditional plasmas are often defined in terms of
the Debye screening length. An ionized gas is a plasma when the size of the sample
is larger than the Debye length [11]. In our experiments the Debye length, which is
given by Ap = 1/cokpT,/e*n, can be as low as 500 nm, while the size of the sample
is about 200 pym.

The threshold condition N = N* for electrons to be trapped is mathematically
equivalent to Ap = ¢. If N > N* electrons are trapped by an internal electric
field in the ion cloud. Equivalently if Ap < o, any displacement of electrons from
their equilibrium positions due to their thermal energy is counterbalanced by the
local internal electric field; a plasma is formed. If N < N*, the well depth of all
the photoions is smaller than the kinetic energy of the electrons and they all leave.
This condition is equivalent to Ap > ¢, which means that the electrons are free to
escape.

The low temperatures of the electrons and ions allow access to a new region
of parameter space of neutral plasmas. The Coulomb interaction energy between
nearest neighbours can be less than the thermal energy of the particles. This
situation is characterized quantitatively by the Coulomb coupling parameters [12]
. = (e?/(4meoa))/(kgT.) for electrons and I'; = e~*/*2T,T,/T; for ions. Here a =
(47n/3)"1/3 is the Wigner-Seitz radius. The exponential factor in the expression
of I'; is due to the shielding of the ion-ion interaction by electrons. Plasmas that
are in a state of thermal equilibrium and for which I' > 1 are known as strongly
coupled plasmas [12]. In our experiment, densities and temperatures can be such
that the numerical values of the coupling parameters are I’ = 10 and T'; = 1000.

However, electrons and ions are not in thermal equilibrium, but they each have
thermalized with themselves.

IV FUTURE EXPERIMENTS

The properties of traditional plasmas, in which the temperature spans a range
from 10" K to 300 K have been extensively studied [11]. At lower temperature
the properties of a plasma, and in particular the recombination rates are expected
to change. At high temperatures three-body recombination processes have a very
strong temperature dependence (o« 7~%2) [13] and can exceed the radiative re-
combination rate (< T7'/2) only at very high densities (> 10'®cm~2) [14]. An
extrapolation to the conditions in our experiment results in radiative recombina-
tion times of tens of seconds and three-body recombination times of nanoseconds
(for T. = 1K and n = 2 x 103cm™3). The long lifetimes we ‘observed (= 100 us)
suggest that the theory, and also an extension to T' & 1 K [15], is no longer valid.



Studies of the three-body recombination rate in the ultracold plasma are currently
under way.

With this new plasma a series of interesting experiments can be performed.
Plasma oscillations, which have frequencies of up to 400 MHz can be used to deter-
mine the density distribution of the system. Magnetic confinement may be used to
increase the lifetime of the plasma. Also thermalization and evaporative cooling of
electrons need further study. In the current experimental setup, the lowest initial
temperature of the electrons is 100 mK, and is limited by the bandwidth of the
green laser (0.07cm™). This temperature could be reduced to about 10mK by
using a laser with a bandwidth equal to the Fourier transform of a 10 ns pulse.

Instead of photoionizing the cold atoms, one can tune the laser below the ion-
ization potential and excite the atoms into very high lying Rydberg states. Such a
dense cold gas of Rydberg atoms may undergo a phase transition to a plasma-like
state [16]. We have performed preliminary experiments aimed to verify this pre-
diction. The time sequence of these experiments is the same as the one described
earlier for the plasma creation. The only difference is that the magnitude of the
ramped electric field must be higher in order to be able to field-ionize the bound
Rydberg states. Fig.4a shows the electron signal recorded for two different densi-
ties of cold Rydberg atoms. At low density the large double peak in the signal is
due to field-ionized Rydberg atoms. At higher densities an early peak of weakly

1.0 (b)
0.20
0.8
/'T w
3 015 i1 g 8
= : g» § 0.6 —
2 & g
2 g %
o 1
g 0.10 ! H = g 0.4 —
= -~ —
k= < 5
3 N g 3
M ooo5 ¢ i g = o2+
0.0 -
0.00 T —
3 456 2 3 45686
0 50 100 107

Arrival time (is) Initial Rydberg atom density (cm™)
FIGURE 4. Excitation of laser cooled atoms into Rydberg states with principal quantum num-
ber 140. (a) Electron time of flight signals recorded for two different densities. At lower density,
n =5 x 105cm™3, the signal consists mainly of electrons from field-ionized Rydberg atoms (solid
line). At high density, n = 5 x 107 cm™3, the weakly bound electrons appear in an earlier peak
{dotted line). Also shown is the applied electric field. (b) Fraction of electrons from field ionized
Rydberg atoms (circles) and from weakly bound (plasma-like) states (triangles) as a function of
initial density of Rydberg atoms.
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bound electrons develops and the contribution of electrons from atoms is reduced.
As the initial density of Rydberg atoms increases the fraction of electrons from
field-ionized Rydberg atoms decreases, while the fraction of electrons in the early
“plasma”-peak increases. This behaviour appears clearly in Fig.4b. The onset
of the transition is predicted to scale as the sixth power of the Rydberg principal
quantum number and we are currently exploring this experimentally. The transition
from the bound (Rydberg) states to an unbound plasma-like state is suggestive of
insulator-conductor transitions, that are often referred to as Mott-transitions [17].
The cold and dense gas of Rydberg atoms is well suited for studying the insulator-
conductor phase transition, since, unlike in solid state physics, we have control over
parameters such as the temperature and density of the system.

CONCLUSION

We have created a new, ultracold, neutral plasma by photoionizing laser cooled
atoms. The initial temperature of the ions 7T; ~ 10 uK is essentially equal to that
of the atoms, whereas the electron temperature depends on the laser frequency and
can vary between 7, = 0.1 — 1000 K. The densities of the ultracold plasma can be
as high as n = 2% 10% cm™3. The plasma is not confined and has a lifetime of about
100 us. This ncw system opens the way to a variety of studies, such as three-body
recombination rates for temperatures less than 1K and phase transitions between
bound and unbound states. The technique is applicable to any atom that can be
laser cooled.

S. Kulin acknowledges funding from the Alexander-von-Humboldt foundation,
and T. C. Killian is supported by a NRC postdoctoral fellowship. This work was
supported by ONR.
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Collective Modes in Strongly Coupled Dusty
Plasmas !

M. S. Murillo

MS B259, Plasma Physics Applications Group
Los Alamos National Laboratory
Los Alamos, N.M. 87545

Abstract. Dusty plasmas offer a new setting for exploring dynamical phenomena
in the strong coupling regime. In contrast to nonneutral plasmas, screening occurs
in the dusty plasma and the effective interaction is approximately of a Yukawa form;
this leads to acoustic-like modes rather than Langmuir-like modes. Dust acoustic
waves thus have a dispersion relation that exists for very low and very high frequencies
and wavevectors. Here the interpolation ansatz method is used to construct a strong
coupling theory that is valid over this range. In this method the correct hydrodynamic
limit is recovered and the lowest-order sum rules are satisfied.

I INTRODUCTION

Laboratory dusty plasmas are multicomponent plasmas that contain large (~pum)
grains that may have masses M as high as 10'%2 proton masses and have various
shapes, compositions, and charges. In recent years such dusty plasmas are routinely
created in the laboratory under controlled and increasingly well characterized con-
ditions. The most common laboratory approach is to introduce spherical glass or
plastic grains into a radio-frequency discharge plasma in which the electrode sheath
acts as the trapping field. The grains are charged negatively, due to the higher elec-
tron mobility, and may have net charges as high as Q~—10° elementary charges.
The neutral background acts to cool the grains to temperatures of order T'~0.5¢V.
Together, these two conditions of high charge and cool temperatures leads to large
values of the Coulomb coupling parameter,

_ @
r=—, (1)

where a = (3/47n)!/? is half the mean intergrain spacing.

1) This research was supported by the Los Alamos National Laboratory Directed Research and
Development (LDRD) program.
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The electron-ion plasma that forms a background to the dust grains is polarized
by the charged grains and the effective grain-grain interaction is therefore a screened
interaction, here taken to be of the Yukawa form

2
v(r) = Q—e_'p‘". (2)
r
This is only a model for a real dusty plasma in a trap with electric fields. In reality
the sheath electric field acts to cause the ions to stream through the trapping
region, among other effects. As such, it is not clear what the best choice for the
screening length ), is - here we will take it to be arbitrary and simply refer to the
background screening length, or equivalently, the background screening wavevector
g = 1/As. The screening causes the wave dispersion to be acoustic-like (w~cq),
rather than Langmuir-like (w~wy), just as it is for the ion-acoustic wave. The
dust acoustic wave (DAW) thus provides a setting for exploring dynamical strong
coupling phenomena from very low frequencies and wavevectors to much higher
frequencies and wavevectors.

There are many theoretical approaches to the description of DAW’s in the strong
coupling regime. A hydrodynamic approach has been employed by Wang and
Bhattacharjee [1] and the usual DAW dispersion relation is recovered with viscous
damping. The hydrodynamic approach has been extended to higher frequencies by
Kaw and Sen [2] with a viscoelastic generalization. Microscopic theories, such as the
quasilocalized charge (QLC) method, have been used by Rosenberg and Kalman (3]
and Murillo [4] has given a kinetic theory treatment. Each of these approaches has
strengths in certain regions of the (q,w) plane, although none applies for the entire
range. Specifically, the hydrodynamic description applies only for small frequencies
and wavevectors, the viscoelastic theory does not describe nonlocal compressibility
effects, the QLC is intrinsically a high-frequency theory, and the kinetic approach
is intrinsically a low-frequency theory. Here an attempt is made to approximately
cover the (g, w) plane by constructing a response function that satisfies sum rules
at both low and high frequencies.

II INTERPOLATION ANSATZ METHOD

Perhaps the most important guiding principle for constructing theoretical models
of strongly coupled systems is the use of frequency moment sum rules. These
rules can be thought of as conservation laws on the frequency content of response
functions, and have found use in neutral liquid physics and degenerate electron
gases. For example, in the theory of liquids, simple models coupled with exact sum
rules have been shown, in some cases, to be superior to more complicated models.
(5] Interestingly, for electron liquids it has been shown that satisfying frequency
moment sum rules can lead to better static properties. [6] Here the interpolation
ansatz method [7] (IAM) is used to construct a strong coupling theory for describing
collective modes in dusty plasmas.
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The collective modes can be found from the poles of the response function x(q, w),
defined by

on(q,w) = x(q,w)Ue(q,w). (3)

This equation relates density fluctuations én(q,w) to the strength of an external
potential energy source U.(q,w); clearly, the poles of x(q,w) correspond to finite
density fluctuations for vanishingly small external perturbations. This equation
is defined in terms of the wavevector q and the frequency w. The simplest start-
ing point for calculating the response function is the ideal gas response function
x%(q,w), again defined by

§n(q,w) = x°(q,w)U.(q,w). (4)

This can be improved by adding to the external potential a term that represents
the interaction due to the other particles. That is, we can assume the dust grains
are free particles that respond to an effective external potential of the form

Ue(q,w) = Ue(q,w) + v(q)dn(q,w). (5)
In terms of the definition (3), this gives a response function of the form
(0)
x"(q,w)
dn(q,w) = Ue(q,w
(@e)=12 W@ Og ) )
= Xm(Q, 0)Ue(q, w). (6)

This approximation is referred to as the “random phase approximation” or the
“mean field approximation” (MFA) and, already with this approximation, we ob-
tain collective modes of the form

w2 2
== (7)
e Tt
where the leading term in the large w expansion of x(®)(q,w) has been used. This
is, of course, the usual (weak coupling) dispersion equation for DAW'’s.
Rather than using a relation such as (5), we can also view the MFA in terms of
an excess inverse response, as in

1 1
xmt(@w)  x(q,w)

—-‘U(q), (8)

where the interaction plays the role of the excess inverse response function. By
analogy with (8), and because we already have the MFA solution (7) in hand, we
may define the ezact excess inverse response by

1 1
x(qw)  xXmflq,w)

= '_‘IJ((L“J): (9)
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or,

me(q7 w)

(@ @)@ @)’ (10)

x(aw)=T1—5

Note that, in general, the excess response corresponds to a dynamical (wavevec-
tor and frequency dependent) interaction. Since the starting point (8) already
leads to the the well known DAW dispersion (7) (with, e.g., Landau damping
taken into account); all information beyond the MFA is contained within ¥(q,w).
The response ¥(q,w) is related to the dynamic local field correction G(q,w) by
¥(q,w) = —v(q)G(q,w)- 8]

The problem is now to determine ¥(q,w) in some manner. In the IAM a func-
tional form for ¥(q,w) is postulated that satisfies certain contraints. Typically
these constraints are frequency moment sum rules that the full response function
x(q,w) is known to satisfy exactly. For acoustic-like waves we require that both
the low and high frequency limits of ¥(q,w) are accurately treated and, hopefully,
the transition region between the two limits is not too large. These asymptotic
limits of x(q,w) can be obtain through the Kramers-Kronig relation

o &' x'(a,)
daw) = [ (1)

which yields

: _ ™ 2m ), —(2m+1)
lim x(q, w) = gﬂw {w ) (12)
~(w ) et w )+ (13)
and
. o] w2m+1
Jim x(q,w) = - Z_:O <w2m+2> (14)
(@) (%)
—;;'—'7_.... (15)
The frequency moments are defined by
% duw
@)= [ Zurx(a,), (16)

and are purely structural (q-dependent) quantities. The equivalent ideal gas ex-
pansions that are needed are

2 4
. (0) _nq 3nq T
I aw) = gm t gper o
im y© __r
lim x™(qw) = -7 (17)
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As a first example, consider the static limit x(q,w) = x(q,0). From the classical
fluctuation-dissipation theorem,

S(a0) = - 2ox"(q,0) (18)

we have immediately
e A
™) = 2S(a). (19)

Here S(q,w) and S(q) are the dynamic and static structure factors, respectively.
Thus, by accurately calculating S(q), we exactly satisfy the (w™!) sum rule provided
we choose

T 1
¥(q,0) = () [g@ - 1} . (20)

Similarly, the high-frequency sum rules (w) and (w®) can be obtained easily, and
these are the most useful for constraining ¥(q,w) - the other sum rules require
knowledge of correlation functions beyond the pair correlation function. Some-
times the so-called static local field correction approximation is assumed such that
U(q,w) =~ ¥(q,0) for all w. [4]

At high frequencies we can combine (9), (11), and (17) to obtain

_ e
3Ing'T alqt
_(w3) = Ve + 7 ¥(q, 0o). (21)

Again, provided we accurately compute the sum rule (w?®) and we choose a form
for ¥(q,w) that has the high-frequency limit (21), we will satisfy the sum rules (w)
and (w®). Explicitly, we have

&%v(r)

1
¥(g,00) = 5 [ Prol(r)(1 — cos(ga)) (22)
Given the exact forms for ¥(q,0) and ¥(q, 00), a suitable form that interpolates
between the limits is needed. One such form is

_ (wr)B
‘P(qa w) - ‘I’(q,O) + 1

T((;;)—g(‘l’(qyoo) - ¥(qg,0)), (23)

where 7 is some (unknown) characteristic timescale that separates low and high
frequencies and 3 is to be determined. Since the response function expansions are
all in terms of even powers of w, we assume # is even. It is important to note
that the sum rules used so far only provide constraints on the real part of ¥(q,w),
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which may be, in general, a complex quantity that describes collisional damping.
The imaginary part can be obtained by ensuring that collective modes based on
¥(q,w) match the modes of the Navier-Stokes equation in the hydrodynamic limit.
In that limit it has been shown that the damping results from the replacement [9]
2 4
g—g — wid (‘% + i(qa)“—%—;—c—) . (24)
Here 7 is the shear viscosity, ¢ is the bulk viscosity, and * = na® Mw; is a charac-
teristic viscosity. Matching the collective modes of (10) to this form, it is revealed
that
wintla wﬁM
wg 7t n
Damping of this sort is often generalized to higher frequencies with the replacement

[2,9]

'(q,w) = — (25)

n+¢

1 —iwry,
where 7. is the viscoelastic relaxation time that separates slow, viscous timescales
from fast, elastic timescales. Clearly, at very high frequencies (above a collision
frequency) and at large wavevectors (short length scales) we expect free particle
rather than elastic behavior; thus, we assume that 7(q) tends to zero for large
wavevectors. Note that (26) makes (25) a complex quantity with a real part that
scales like w?/(1 + w?r2), which suggests choosing 8 = 2 and 7 = 7, such that
the ansatz (23) is consistent with the viscoelastic Navier-Stokes equation. Unfor-
tunately, (26) does not suggest a method for extending into the finite wavevector
regime. This can be partially accomplished by writing

‘IJ”(q QJ) — wTﬂeH(q)

gn +{— (26)

=Tt wir (27)
and using the analytic property of ¥(q,w) {8]
dw P (q,w
¥(q,0) — ¥(q,0) = 'P/ ( ) (28)
to yield
1 2 2 .
Uaw) = 75 ((q,0) + w2 ¥(q, 00) — iwr,e[¥(q,0) — ¥(q,o0)]) . (29)

With this ansatz we have determined the dynamical response of a strongly coupled
dusty plasma over the entire frequency range and have included collisional damping.
The functional form for 7(q) and the values of the viscosity for a Yukawa system
are not known but may be obtained, in principle, by enforcing higher-order sum
rules, but this requires unknown three-body correlation functions. Alternatively,
it may be possible to determine 7(q) by enforcing self-consistency between S(q)
and S(q,w). The viscosity may be obtained by a separate calculation based on, for
example, molecular dynamics simulation.
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IIT DISCUSSION

The IAM has been applied to strongly coupled dusty plasmas, which have been
modeled as a Yukawa system. A response function ¥(q,w) has been given that
satisfies the (w™'), (w), and (w®) sum rules and smoothly interpolates between low
and high frequencies. The functional form for ¥(q,w) is chosen to also match the
response of the viscoelastic Navier-Stokes equation, which identifies the viscoelas-
tic relaxation time as the characteristic scale separating low and high frequency
regimes. This analysis has indicated the possibility of measuring the viscosity of a
strongly coupled Yukawa system with DAW’s.
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Experiments on Particle-Particle
Interactions in Dusty Plasma Crystals

A. Melzer, A. Piel

Institut fiir Ezperimentelle und Angewandte Physik, Christian-Albrechts-Universitdt Kiel, 2098
Kiel, Germany

Abstract. The interaction forces between dust particles trapped in the space charge
sheath of a plasma discharge is measured quantitatively. Dust particles in the same
horizontal plane interact by means of a repulsive screened Coulomb interaction. Dust
particles, however, at different vertical positions interact by net attractive forces, that
are non-reciprocal as a consequence of the non-equilibrium sheath environment.

INTRODUCTION

Dusty plasmas are ideally suited as a model system for the study of stron-
gly coupled systems. In typical experiments [1-4], monodisperse micron sized
dust particles are trapped in the space charge sheath of plasma discharges, where
strong inhomogeneous electric fields E(z) levitate the particles against gravity, i.e
ZeE(z) = mg, where m is the dust mass and g the gravitational acceleration.
Since the monodisperse particles have the same mass they are trapped in a single
horizontal plane at the height zo in the sheath. The particles are charged by the
continuous inflow of plasma electrons and ions to high (negative) charges of the
order of Z = 10* elementary charges.

Due to this enormous charge the Coulomb coupling parameter I' =
Z%e?[(4meobkT) (with b denoting the interparticle distance and 7' the dust tem-
perature) is much larger than unity even at room temperature, thus giving rise to
the formation of Coulomb liquids or solids. The time scales and particle sizes in
these dusty plasmas allow a direct observation of the particles’ motion with CCD
cameras.

From observations in dust crystal arrangements with more than one layer a num-
ber of peculiar observations have been made. The particles of different layers are
typically found to be vertically aligned rather than close-packed [1,5). Furthermore,
these systems show self-excited horizontal oscillations about their vertical aligned
lattice sites at reduced gas pressure in the discharge which finally leads to a drama-
tic increase in dust temperature and a subsequent phase transition into a Coulomb
liquid or gas [6,7].

CP498, Non-Neutral Plasma Physics 111, edited by John J. Bollinger, et al.
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Although a rcasonable understanding of the properties of these dust systems
in view of, e.g., the crystal structure [1,8], solid-liquid phase transitions [6,7], and
wave propagation [9,10] has been achieved, the fundamental question of the particle-
particle interaction in plasma crystals is still in need for experimental verification.

The difficulty involved with these systems is the non-neutral plasma environment
with strong electric fields. Theoretical investigations attributed the vertically ali-
gned structure to the ion streaming motion around the dust particles due to the
prevailing electric field in the sheath and an attractive wake potential downstream
the particles is formed by polarization of the plasma environment {11,12]. From
a more complete analysis of the non-equilibrium sheath environment and of the
dust-ion Coulomb collisions by means of Monte-Carlo simulations and analytical
models [5,13] the ions are found to be deflected into a region downstream the dust
particles. The ion cloud around the dust particle therefore forms a long tail down-
stream the dust particles. The interaction between this ion cloud and other dust
particles is demonstrated to be not only attractive but also asymmetric or non-
reciprocal in such a way that the upper particle can only mediate an attractive
force on the particles downstream of the ion cloud [5,13]. The lower particle is not
able to polarize the ion stream to yield a net attractive force on the upper particle.
It is the attraction, that is responsible for the vertical aligned structure, and the
asymmetry of the atiraction is the reason for an instability leading to the observed
oscillations and the phase transition of the plasma crystal [14].

Here, quantitative measurements on the dust particle interaction will be presen-
ted.

EXPERIMENTAL RESULTS AND DISCUSSION

The experiments are performed in a parallel plate 1f discharge in helium (sce Fig.
1). The lower electrode is powered at 13.56 MHz with discharge powers of the order
of 10 W. The upper electrode as well as the entire discharge vessel is grounded.
The dust particles are dropped into the discharge from a small container located
above the upper electrode. In the experiments presented here, monodisperse plastic
spheres of different radii a are used.

The dust particles are trapped in the sheath above the lower electrode at a
position where the force balance of electric field force and gravity is established.
The particles are illuminated by a fan of laser light (not shown in the figure) and
the scattered light is viewed from top and from the side by CCD cameras.

The interaction between the dust particles in the horizontal plane is derived
from the dispersion of longitudinal waves in the strongly coupled dust system. To
simplify the experimental situation and the theoretical analysis, the dispersion in a
linear (1D) particle arrangement is studied. The linear ordering is achieved by an
elongated rectangular barrier on the electrode which confines the particles laterally
(see Fig. 1 a). 10 particles of 9.47 um diameter are trapped in a chain. The wave is
excited by periodically modulating the beam of a laser diode (40 mW at 690 nm)
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FIGURE 1. Scheme of the experimental setup for (a) waves in a linear chain and (b) vertical
interactions.

that is focused onto the first particle in the chain. The radiation pressure of the laser
sets the particle into motion, thus driving a longitudinal wave. For each particle
its time averaged position a:g") and its oscillatory motion z( is determined. From
the phase shift between the particles the wavelength and from the spatial decrease
of the amplitude the damping length is derived. These values correspond to the
real (g.) and imaginary part (¢;) of the wave vector ¢ = ¢, +1¢; of the propagating
wave z(® o exp(igz — iwt). Since the wave is driven w has to be taken as real and
g as complex.
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FIGURE 2. Dispersion relation of the linear chain.

The dispersion relation of an electrostatically coupled linear chain is [15,10]

g . N okn . ,(qb Z%e?
W ifw=4) —osin { o k, = v exp(—nk)(2 + 2nk +n’s*) (1)
n=1

where (3 describes the friction of the particles with the neutral gas. & = b/Ap is the
screening strength (Ap denotes the Debye length). Here, the particle interaction




is assumed to be of Debye-Hiickel type. From the experiment, the complex wave
vector as a function of excitation frequency is measured. The interparticle distance
b = 600 um is easily measured from the video images and 8 is known from the gas
pressure (10 Pa). The obtained dispersion can be compared to the theoretical one
in order to derive the crucial parameters Z and «.

Figure 2 shows the measured dispersion relation along with the best fit of the
theoretical dispersion (1). One can see that the real part of g increases linearly
with frequency (acoustic dispersion), whereas ¢; stays almost constant up to 2 Hz
and shows an increase at higher frequencies. From the best fit the dust charge is
determined as Z = 9000 which is in good agreement with the value Z = 11000
obtained from the standard resonance technique [3,16] under the same conditions.
The screening strength is measured as £ = 0.9, which was also found under different
conditions [10]. This value of the Debye length can be attributed to the shielding by
the suprathermal ion flow in the sheath. Summarizing, the interaction between dust
particles in the horizontal plane can be understood as a repulsive screened Coulomb
interaction, where the screening length is close to the interparticle distance.

o upper °o upper
* Jower * Jower
0 1 2 3 4 5 1.2 3 4 5 6 7 8 9
time (s) time (s)

FIGURE 3. Behavior of the two particles at 61 Pa when (a) the upper and (b) the lower particle
is pushed by thec laser. The upper particle is pushed with 30% and the lower particle is pushed
with 50% of the maximum laser force, respectively.

As mentioned above, the interaction for vertically separated particles is expec-
ted to be nct attractive and asymmetric. In analytical models, the ion cloud is
replaced by a positive point charge @4 located at a distance d; below the dust
particle. The attraction of that cloud then acts on downstream particles, only.
This non-reciprocity is an effect of reducing the many-body behavior and the di-
rected motion of the ions to an effective dust-dust interaction. Nevertheless, this
effective interaction mimics the real situation very accurately.

In order to measure the attractive force directly a system of only two single
dust particles of different radii is immersed in the sheath (2¢; = 3.47 pym, m, =
3.31 - 107 kg, Z; = 2200 and 2a, = 4.81 um, m, = 8.82 - 107! kg, Z, = 5860).
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These two particles are then trapped at different heights in the sheath, but are free
to move in the horizontal plane. They are pushed individually by a focused laser
beam (see Fig. 1 b) and from the reaction of one particle to the motion of the other
the attractive force is measured [17].

The motion of the two particles in the horizontal plane can be written as

miEy +mifhis = 422?;3 (71 — x2) (2)
7 ; QlQQ Q+ 1
Moy + Mmootz = (6_1)47r60d3(x1 — z3), = 6;;5‘5

Here, d = 1110 pm denotes the vertical distance between upper and lower particle.
Coulomb repulsion is considered for the upper particle, whereas the lower particle
experiences the repulsive force from the upper and the attraction from the ion cloud.
The attractive force is measured in units of the repulsive force by the parameter e.

dust particle
(m))
ion cloud d
, ‘ Ioser
dust pqmde ............ Dissociation . . IN_.....
-10
50 100 150 200 250
Ax (pm)

FIGURE 4. (a) Scheme of the forces acting on the lower particle. The ion density distribution
is replaced by a single positive point charge attracting the lower particle, only. (b) Measured
attractive force as a function of displacement of the lower particle. The horizontal dashed line
indicates the force necessary to separate upper and lower particle.

When the upper particle is hit by the focused laser beam (Fig. 3 a), both particles
move as a pair. They stay vertically aligned during that motion, their horizontal
position being identical. This observation gives immediate evidence that the lower
particle feels an attractive force mediated from the upper particle. The force exerted
by the laser is determined from the force balance with neutral drag m,3,4, when
the upper particle is moved by the laser. The laser force is determined as Fiyer =
(17 £1)- 107 N at full intensity.

When the lower particle is pushed it leaves its aligned position, and the upper
particle does not follow the lower one. At a lower laser force (0.5F4ser ) the lower
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particle is shifted by only 200 pm. At higher laser forces the lower particle is
completely separated from the upper one, but the upper does not follow the lower
one. This definitely shows that the upper particle does not experience any attractive
forces from the lower particle. Therefore, it is proven, that the interaction between
upper and lower is indeed attractive and non-reciprocal, where only the lower one
experiences a net attractive force by the upper one, but not vice versa.

When the lower particle is shifted by the laser, the net attractive force and the
laser force balance each other, i.e. Figser = (€ — 1)Q1Q2/(4meod®). Thus a variation
of the laser force allows to directly probe the attractive well for the lower particle.
The result of this measurement is shown in Fig. 4, where the horizontal deviation as
a function of laser force is shown. From the gradient Fizser/Az = —4.63-10"' N/m
the attractive force parameter is measured as € = 22.1.

In summary, in the horizontal planc the dust particles interact by means of a
repulsive screened Coulomb potential with a screening length that is close to the
interparticle distance. For particles located at different heights in the sheath, the
interaction is much more complex. The upper particle only reacts to a repulsive
force from the lower one, whereas the lower one experiences a much stronger at-
traction due to the ion cloud. This strong attraction leads to the observed vertical
alignment.

We like to thank Irina and Vitaly Schweigert for helpful discussions.
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Abstract. Dusty plasmas can be regarded as assemblies of Yukawa particles in a one-
dimensional potential well. We extend the analyses on dusty plasmas in two directions:
the two-dimensional Yukawa system and Yukawa mixtures. (1) Under appropriate
conditions at low temperatures, dust particles sit in a plane which is perpendicular to
the gravitational field. When they are also confined laterally by an electrode, we have
a finite two-dimensional system of Yukawa particles. The low temperature structures
are obtained by molecular dynamics simulations and the results are reproduced by
theoretical analyses. Through these analyses we show that the correlation energy of
the Yukawa system plays an essential role in structure formations. As for dynamics of
this system, a crossover from the surface freezing of Coulomb system to surface melting
of systems of short-ranged interactions is observed. (2) In the case of mixtures, we have
an extra parameter characterizing the difference in the gravity on each species. We
obtain the low temperature structures of this system and compare them with theoretical
predictions based on the results for the case of one component.

INTRODUCTION

Physics of dusty plasmas, assemblies of macroscopic charged particles immersed
in plasmas, is closely related both to important practical problems and to subjects
of basic statistical physics. One of most exciting observations may be the formation
of structures such as crystals and their transitions. We simplify the system as far as
possible and try to find essential factors in the structure formation and transitions
through numerical simulations and theoretical analyses.

We assume that our dusty plasma is formed above a wide horizontal plane elec-
trode and dust particles are levitated by the electric field against the vertical grav-
itational field in the direction of —z. We adopt the ion matrix sheath model and
further assume that the density of charges in the sheath (except for those of dust
particles) eng, is constant, e being the elementary charge.

For a dust particle of mass m and charge —¢, the total potential is given by
mgz + 2mgeng,z® in the domain z < 0, z = 0 being the boundary between the

CP498, Non-Neutral Plasma Physics 111, edited by John J. Bollinger, et al.
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plasma bulk and the sheath. Dust particles are thus in the potential well [1]:
Beri(z < 0) = mgz + 2mgensy2® = Pegr(20) + 2mgengy(z — 20)?, (1)

where zg = —(g/4meng)(m/q) < 0. In the domain z > 0, we have only the
gravitation @ez(z > 0) = mgz.

Regarding the interaction between dust particles as the isotropic repulsive
Yukawa potential (q*/r) exp(—7/)A), —q being the (negative) charge on a dust par-
ticle, we have obtained a phase diagram at low temperatures for the number of
layers of dusty plasmas confined by a one-dimensional potential ves(2) = (1/2)k2?
such as (1), where k = 4mgen,;, by molecular dynamics simulations. We have also
theoretically shown that the correlation energy in the lattice plane is of essential
importance in realizing such a phase diagram [2-7].

TWO-DIMENSIONAL YUKAWA SYSTEM

When we have strong enough confinement or weak enough repulsion between
particles, only one layer is formed in the confined Yukawa system. We now consider
the case where these dust particle in a plane are also confined laterally by an
electrode surrounding dust particles. We denote the coordinates as r = (R, 2), R
being the zy components. The electrostatic potential of the surrounding electrode
in the plane may be approximately expressed in the parabolic form

(1/2)KR?. (2)

We thus have a finite two-dimensional Yukawa system in a parabolic potential. At
low temperatures, this system is characterized by a single dimensionless parameter

o =g /KN (3)

in addition to the trivial one, the system size or the number of particles N.

Molecular Dynamics Simulation

We have performed molecular dynamics simulations at constant temperatures.
Some results for the structures at low temperatures are shown in Fig. 1. For
small systems, the global minimum is the ring structure for N < 5 and the star-like
structure for N > 6, irrespective of the value of . With the increase of the number
of particles, these structures gradually change into triangular lattice in the central
part and surrounding circular structures.

When we have relatively large number of particles, the distribution is described
by the average surface number density p(R) plotted in Fig. 2. The number of local
minima rapidly increases with the system size and it becomes almost impossible
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to find the global minimum. We may expect, however, the function p(R) is not
sensitive to whether our system is in one of local minima or in the global minimum.
In the case of unscreened Coulomb interaction, two-dimensional clusters have

been simulated [8,9]. Structures of dust clusters have recently been observed ex-
perimetally [10,11].

Theoretical Analyses

When the Yukawa particles are distributed uniformly on a plane z = 0 with the
surface density po, the interaction energy per unit area is calculated as TqEApE.
Neglecting the edge effect and adopting the local approximation, we may estimate
the interaction energy of our finite Yukawa system Ujn; as

Upnt = / dR7g*\p(R)?. | (4)

Assuming that p(R) = 0 for R > R, we find p(R) and R,, which minimize the
value of Uiy + Uegy where Uegy = [ dR(1/2) K R?p(R). The results are

A2p(R) = 47rz/\2(an—R2), (%’”—) — 8aN. (5)

When compared with results of simulations, this result underestimates the surface
density, as shown in Fig. 2.

In the above calculation, the correlation (cohesive) energy between particles has
been neglected. Since the correlation energy is negative, particles can be distributed
more compactly when the correlation energy is taken into account. The correlation
energy (per unit area) of the two-dimensional Yukawa lattice of the surface density
po is expressed by a function econ(1/ Moy %) as¢? o ecn(1/ Apé/ %) [6]. This expression
provides us with approximate values of the cohesive energy of two-dimensional
Yukawa system at low temperatures. When we take the cohesive energy between

particles into account within the local approximation, we have finally the results
also plotted in Fig. 2:

Mp(R) = [const + ( 47"11 v (RZ — Rz))m] : (6)

We observe that theoretical results for the density and the maximum radius are
greatly improved and the results of simulations are almost reproduced when o > 1.

Melting in Two-Dimensional Finite Yukawa System
As one of most interest'ing dynamic behavior, we have observed the melting

of the laterally confined two-dimensional Yukawa system by molecular dynamics
simulations. Some results are shown in Fig. 3.
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When the parameter a is large, the system melts from the surface as naturally
expected from the fact that the bonding between surrounding particles are weak on
the periphery. When « >> 1, the system resembles that of short-ranged interaction
and our result is consistent with that for, for example, the Lennard-Jones system.

When o is extremely small, it seems that the situation changes and the system
melts from the center. Since the interaction between particles may be approxi-
mately considered to be Coulombic in this case, our result may be consistent with
the known result of surface freezing for the finite Coulomb system [12]. The melting
is sensitive to the existence of lattice defects and more extensive simulations may
be necessary to establish this tendency of surface freezing for small values of .

STRUCTURES OF CONFINED YUKAWA MIXTURES

When we have only one species of dust particles, the structure at low temper-
atures is completely determined by the relative strength of screening ¢ and the
relative strength of confinement 7 [5]. In the case where there are two or more
species of dusts, we have to also take the dependence of z, on species into account.
We define a parameter § by [1]

6 = —z/a = (g/4nensa)(m/q) (7)

to represent the separation in z-direction.

According to the values of  and 6, we have four cases. When 7 > 1 and
0 < 1, the Yukawa mixture forms a two-dimensional system or the two-dimensional
Yukawa mixture, when 7 > 1 and § >> 1, separate two-dimensional Yukawa sys-
tems, each being composed of one species, when 77 < 1 and § < 1, a mixture of
Yukawa particles with finite thickness, and when n < 1 and 6 >> 1, two separate
one-component Yukawa systems with finite thickness.

We have performed molecular dynamics simulations on dust mixtures with two
components {1]. The parameters correspond to the case where both kinds of dust
" particles are of the same material and the ratio of radii is 2. We observe that
when 7’s for both species are sufficiently large, they are in the one-layer state and
with the decrease of the parameters n’s, multiple layers are formed. The critical
values of transitions have been compared with those for the one-component case
and satisfactory consistency has been shown when appropriate interpretations are
made. It is also noted that the low-lying heavier species can provide a support for
the lighter species afloat in the domain of bulk plasma. This indicates that we may
have dusty plasmas of light particles in the plasma bulk by intentionally adding
heavy dust particles. In the bulk plasma, the ion flow is small and we may have a
nearly ideal Yukawa system.
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CONCLUDING REMARKS

We have extended our analyses on the simple model of dusty plasmas and ob-
served the behavior of finite two-dimensional Yukawa systems and dusty plasma,
mixtures for a wide domain of characteristic parameters. These results can be
compared with those in real experiments where those parameters are controlled.
The critical parameters for transitions may be useful in determining the plasma
parameters surrounding dust particles. The control of these structures may also
applicable to structure formations related to plasma processing.

This work has been partly supported by the Grants-in-Aid for Scientific Research
(B)08458109 and (B)11480110 from the Ministry of Education, Science, Sports, and
Culture of Japan.
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Abstract. A new method of toroidal non-neutral plasma trap has been developed with
applying the chaos-induced radial transport of particles near a magnetic null point. A
pure electron plasma is produced by injecting an electron beam. The poloidal gyro-
radius of an electron at the energy of 1 keV is of order 10 mm, which determines the
length scale of the chaotic region. Amongst various applications of toroidal non-neutral
plasmas, a possibility of producing very high-g plasma, which is suitable for advanced
fusion, has been examined. The self-electric field of a non-neutral plasma can generate
a strong shear flow. When the flow velocity is comparable to the Alfvén speed (which
is smaller than the ion sound speed, if # > 1), a high-8 equilibrium can be produced in
which the plasma pressure is primarily balanced by the dynamic pressure of the flow.
This configuration is described by a generalized Bernoulli law.

I INTRODUCTION

Toroidal magnetic confinement of non-neutral plasmas will open a new regime of
plasma, physics; (1) the toroidal geometry enables us to confine a plasma without a
longitudinal plugging electric field, and hence, multi-species with different charges
can be trapped simultaneously, (2) a large internal electric field induces a strong flow
(possibly sheared) in the plasma, adding various new phenomena which degenerate
in neutral (or quasi-neutral) plasmas. Because of the conservation of the angular
momentum, however, injection of charged particles across closed magnetic surfaces
is not straightforward. It is required to develop an effective method to break the
invariance of the angular momentum before particles come back to their source
placed outside the confinement region. A connotation of such a process is the

CP498, Non-Neutral Plasma Physics I11, edited by John J. Bollinger, et al.
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Bt coil

FIGURE 1. Proto-RT device: a toroidal non-neutral plasma confinement experiment. A dipole
magnetic field is produced by an internal ring conductor. A toroidal magnetic field yields a shear
of magnetic field lines.

collision-less particle transport across magnetic surfaces, which is one of the central
problem of plasma physics.

To explore a new scheme of toroidal non-neutral plasma confinement and its rich
physical properties, we have constructed a proto-type device “proto-RT” (Fig. 1)
which can generate a variety of magnetic field configurations in combination of a
poloidal field, a vertical field, and a toroidal field (Fig. 2). The dipole poloidal
magnetic field is generated by an internal ring conductor (5 kA DC). A pair of
external coils provides a vertical field to generate a separatrix. Through the axis
of the cylindrical chamber, we can apply a longitudinal current (30 kA DC). The
toroidal magnetic field yields a magnetic shear.

This system applies the chaos of electron orbits in a neighborhood of magnetic
null points on a separatrix [1,2], which allows us to introduce a nonadiabatic effect
that breaks the invariance of the angular momentum (Sec. II) resulting in collision-
less diffusion of particles toward the confinement region. The collisionless diffusion
induced by the chaos is associated with collisionless heating that is a diffusion pro-
cess in the velocity space. Radio-frequency (RF) electron heating experiment has
demonstrated effective collisionless power absorption (Sec. III). This effect can be
applied for an advanced industrial plasma source [3-5].

In Sec. IV, we discuss a fusion application of a non-neutral plasma [6]. The



(d)

FIGURE 2. Two types of magnetic surfaces; (a) Separatrix generates an X-point on the outside
of the internal conductor. (b) Magnetic null points are located on the center axis.

self-electric field of a non-neutral plasma can generate a strong shear flow. When
the flow velocity is comparable to the Alfvén speed (which is smaller than the
ion sound speed, if 8 > 1), a high-8 equilibrium can be produced in which the
plasma pressure is primarily balanced by the dynamic pressure of the flow. This
configuration is described by a system of Beltrami-Bernoulli laws [7]. The set of
solutions contains field configurations which are qualitatively different from usual
neutral plasma equilibria (which are naturally included in the set). The larger new
set may help us to understand a variety of structures generated in plasmas. It also
opens up the possibility of experimenting with altogether different configurations,
and some of which may lead to a novel regime of high-8 plasma confinement.

II CONFINEMENT OF NON-NEUTRAL TOROIDAL
PLASMA

Due to the conservation of the canonical angular momentum, charged particles
cannot diffuse across closed magnetic surfaces of a toroidally symmetric magnetic
field. When the adiabatic invariance of the magnetic moment holds, the guiding
center orbit in an axisymmetric system is integrable, and hence, particles trace pe-
riodic orbits, resulting in short excursions from the source of the particles. Charged
particles, however, can have long orbit lengths in an appropriately designed mag-
netic field [1]. The key is to create a null point in the magnetic field, which destroys
the adiabatic constants of motion. Then, resultant increase in the degree of freedom
brings about chaos of particle motion, and the particle travels a very long distance
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FIGURE 3. Radial distribution of the electrostatic potential in a pure electron plasma.

before it comes back to the particle source. This effect is applied to achieve high
efficiency of charged particle trapping.

A pure electron plasma is produced by injecting an electron beam. The poloidal
magnetic field is of order 10=2 T, and the corresponding poloidal gyro-radius of an
electron at the energy of 1 keV is of order 10 mm, which determines the length
scale of the chaotic region of electrons. An electron gun is placed near the magnetic
null point. The calculated average connection length of chaotic orbits is of order
102 ~ 10® m. Once the electron is decelerated in the confinement region, possibly
by collisions with neutral particles, it will be trapped by the closed magnetic field.

We demonstrated steady-state confinement of a pure electron plasma. The max-
imum electrostatic potential, achieved by injecting electrons with energy of 2 keV,
was about 600 V. The corresponding E x B-drift velocity is of order 106 m/s.
Figure 3 shows the radial distribution of the electrostatic potential. A steep gra-
dient of the potential appears near the separatrix (z = 65 mm), implying that the
separatrix determines the confinement region. Inside the separatrix, the potential
has an almost parabolic distribution. The electron density is of order 10'® m~3.

By varying the probe potential, we measured the energy distribution of confined
electrons. The bulk component has a temperature of ~ 60 eV. In some narrow
regions insider the separatrix, the probe detects beam orbits, where the potential
makes peaks and the energy distribution takes strongly irregular profiles.
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III COLLISIONLESS HEATING AND DIFFUSION
INDUCED BY CHAOS

The mixing effect of the chaos in a magnetic null region produces efficient col-
lisionless heating of electrons, as well as the collisionless diffusion discussed in the
preceding section. With applying a radio-frequency (RF) electric field, we obtain a
large resistivity that represents the macroscopic entropy production. This “chaos-
induced resistance” enables plasma production at a low gas pressure suitable for
advanced industrial applications [3].

The collisionless motion of charged particles in an inhomogeneous magnetic field
(length scale L) and an RF electric field (angular frequency w) becomes most
nonlinear when the normalized electric field, defined by {2]

E

E=
LwB,

(B. = mw/e),

is order unity (m: electron mass, e: electron charge), and the resultant chaos
of orbits yields a positive Lyapunov exponent of order 0.1 (implying that orbits
decorrelate after about 10 cycles of the RF electric field). The “effective collision
frequency” due to the chaos-induced randomization is of the order of the Lyapunov
exponent [2]. The combination of the chaos effect due to the inhomogeneous mag-
netic field and an inelastic collision effect yields an enhanced resistance. Inelastic
collisions open a sink of energy (entropy) in the high-energy region of the velocity
space. This non-equilibrium system is characterized by the cascade process driven
by the mixing effect. The energy dissipation is determined by the speed of the
cascade, which is scaled by the Lyapunov exponent, and the energy removal rate
in the sink region. The theory predicts that the effective resistance is larger than
the classical collisional resistance by factor of 10 ~ 102 [2].

In the experiment, we launch an RF electric field (13.56 MHz) by a toroidal loop
antenna. The electric field strength is of order 1 kV/m. These parameters are
optimized to maximize the Lyapunov exponent of particle orbits in the magnetic
null region. Figure III shows a photograph of the plasma light localized in the
separatrix region. When we apply the same RF electric field without the magnetic
field, we do not observe plasma production.

The RF modulation method also applies to yield collisionless diffusion of elec-
trons. As a result of the chaotic modulation of the angular momentum, the electrons
can move across magnetic surfaces. Numerical simulations show that the spatial
inhomogeneity of RF electric field enhances the diffusion of particles [8].

IV HIGH-8 EQUILIBRIUM WITH PLASMA FLOW

Departure from the quasi-neutral condition allows us to apply significant two-
fluid effects that impart a new freedom to designs of high-performance fusion plas-
mas. The self-electric field in a non-neutralized plasma induces a strong E x B-drift
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FIGURE 4. RF production of a plasma using the chaos-induced collisionless power absorption.
The plasma is produced in the magnetic null region and diffuses along the separatrix.

flow. A fast flow produces a large hydrodynamic pressure that can balance with
the thermal pressure of the plasma.

A proper two-fluid treatment of the mutual interaction between the velocity and
the magnetic fields leads to the delineation of qualitatively new phenomena in
magnetofluids. In order to trace the origin of the coupling between the velocity
and the magnetic fields, let us re-examine the standard formulation. Neglecting
the small electron inertia, the electron equation of motion (under the Lorentz force
and the electron pressure —Vp,) is

1
E+V.xB+—Vp. =0, (1)

where V. is the electron flow velocity and n is the density (assumed to be constant).
Denoting the ion velocity by V| the ion equation of motion reads

a e 1
—_ V.YV = — — Uy,
8tV+( V) M(E+ V x B) Man,, (2)

where M is the ion mass. We normalize the length by the ion skin depth (¢/wyi),
time by the ion gyration time (1/w;), the magnetic field by its representative value
(Bo), the velocity by the Alfvén speed (V4 = By/\/uoMn), and the pressures by
the magnetic pressure (B2/po). Using E = —0A /0t — V¢ and j = p3'V x B, we
can rewrite (1)-(2) as

%A:(V—-VxB)xB—V(—-¢+pc), 3)
S(V+A) =V x(B+VxV)-V(V*/24p+4). (@)



Taking the curl of (3) and (4), we can cast them in the standard form of vortex-
dynamics equation:
i

50— VxUixQ)=0 (j=1,2) (3)

in terms of a pair of generalized vorticities and the corresponding flows

Q, = B, Q=B+VxV,
U1=V—VXB, U2=V

The simplest stationary solution to (5) is given by the “Beltrami conditions”
Uj=u (=12), (6)

implying the alignment of the vorticities with the corresponding flows [7]. Writing
a = 1/py and b = 1/p, and assuming that a and b are constants, the Beltrami
conditions (6) translate to the simultaneous linear equations

B=a(V -V x B), (7)
B+VxV =bV, (8)

which have a simple and significant connotation; the electron flow (V. =V —V x
B) parallels the magnetic field B, while the ion flow V' follows the “generalized
magnetic field” (B + V x V') which contains the Coriolis’ force induced by the ion
inertia effect on a circulating flow.

As a direct consequence of the Beltrami conditions (7)-(8) and equilibrium con-
ditions for (1)-(2), we obtain a set of generalized “Bernoulli conditions”

V?/2 4+ p; + ¢ = constant, (9)
pe — ¢ = constant. (10)

We note that the constancy of the energy density (the sum of the potential and the
kinetic energy) implied in (9)-(10) refers to the directions perpendicular, as well as
parallel, to the streamlines of V' and V.. This is an essential difference from the
conventional Bernoulli condition.

It might appear that the Beltrami-Bernoulli states are very special and may
be generally inaccessible. These conditions, however, follow from the concept of
relaxed states. Indeed, the Bernoulli conditions describe homogeneous distributions
of the energy density.

Adding (9) and (10) yields

1
5,3 + %Vz = constant, (11)

where 3 is the standard beta ratio. When the magnetic field and the flow have
comparable magnitudes (in the Alfvén normalized units), the equilibrium can have
a large beta value. One possible method to generate such a large flow is to introduce
an appreciable charge non-neutrality which drives the E x B drift spin.
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V  SUMMARY AND DISCUSSION

We have demonstrated the production of a toroidal non-neutral plasma and its
stability in a sheared magnetic field. The experiment has been conducted on a
proto-type device that uses insulated rods to support the internal conductor. The
density (~ 10" m™%) and the total charge (~ 10~® Coulomb) of the trapped par-
ticles are in the same order of those obtained in standard open-field systems. The
confinement time, however, is not evaluated yet, because of difficulty in applying
diagnostics.

The device can be used as a charged particle trap to confine positrons, anti-
protons and so on. The chaos-induced collisionless electron heating can be applied
to produce plasmas at low gas pressure (< 102 Pa) for the use in ultra-fine etching
of semiconductors [3]. Moreover, this effect may play an important role in high-
temperature plasmas such as solar corona and neutral sheet. At magnetic null
points, magnetic field lines can reconnect if there is a finite resistivity (magnetic
diffusivity). In many different examples, the classical collisional resistivity is too
small to account for the observed reconnection rates. The chaos-induced resistivity
is one candidate to explain the anomalous resistivity.

After exploring characteristics of the non-neutral toroidal plasma, we will up-
grade the device employing a levitated internal conductor, and will start experi-
ments on high-4 plasmas. The principle of this confinement method is described
by the generalized Bernoulli law. The plasma is primarily confined by the hy-
drodynamic pressure due to a strong shear flow which is produced by the radial
self-electric field. Therefore, this scheme can be regarded as a new type of electric-
field confinement.
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Abstract. Recently, an internal-ring device named Proto-RT (Prototype Ring Trap)
was constructed at University of Tokyo, and experiments on the device have been
intensively conducted. The main goal of Proto-RT is to explore an innovative method to
attain a plasma equilibrium with extremely high-8 (8 > 1) in a toroidal geometry using
non-neutral condition. At the first series of the experiments, pure electron plasmas
(ne ~ 10 m~3) have been successfully confined inside a separatrix. No disruption is
so far observed. The confinement time of the electron plasmas is of order 0.1 ms for an
X point configuration. The non-neutrality of An. ~ 10'* m™3 is already beyond the
critical value which is required to produce an enough self-electric field E in non-neutral
plasmas with ng ~ 10'® m~3, causing a strong E x B flow thoroughly over the plasmas
where the hydrodynamic pressure of the flow is predicted to balance with the thermal
pressure of the plasmas.

I. INTRODUCTION AND SUMMARY

A possibility of high- equilibrium with strong flow has been theoretically pointed
out [1], which is based on a double-curl Beltrami field. In fact, in our laboratory
several high-8 solutions have been numerically found out in both cylindrical and
toroida} geometries. The requirement to this high-3 equilibrium is to maintain two-
fluid effects with the large velocity field whose magnitude should be comparable to

TABLE 1. Nominal plasma parameters required to
the high-8 equilibrium for ng ~ 10'° m~3.

An, (m™®) central 3 ExB flow at plasma edge

3x10! 0.5 va
4x101 1.0 1.4v,
1x10!2 3.5 2.6v4

CP498, Non-Neutral Plasma Physics 111, edited by John J. Bollinger, et al.
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that of the magnetic field in plasmas. Another significant feature of this equilibrium
is that the thermal pressure of plasmas is sustained by the hydrodynamic pressure
of the strong flow, alleviating the strength of magnetic fields to confine the plas-
mas which offers attractive benefits including the lowest construction costs among
toroidal fusion systems. Some central 8 values expected from the double-curl Bel-
trami condition are listed in Table 1 for cylindrical plasmas having the density ng
of ~ 10" m~3. To obtain such a fast flow in plasmas, a nonneutral condition is
proposed [2] which can actually produce a self-electric field E in plasmas, causing
strong ExB shear flow if we apply an appropriate magnetic field B there. Then,
the question is asked on how the nonneutral plasmas can be produced in laboratory
experiments. Although several methods can be considered, we have proposed to in-
ject quasi-neutral plasmas to pure electron plasmas. In order to explore this way, we
have constructed an internal-ring device named Proto-RT (Prototype Ring Trap).
The magnetic fleld B of Proto-RT is completely static so that experiments on the
device can be performed in well-controlled laboratory settings. Moreover, the de-
vice has a great flexibility to produce various B configurations such as closed-field
configurations with or without magnetic null (X point). Those properties allow us
to investigate fundamental physics of (1) anomalous resistivity in magnetic null [3],
(2) toroidal trapping of antimatters, as well as (3) magnetically confined plasmas.

Regarding to (3), the experiments to confine purc clectron plasmas have been
performed, and the electron density n, of ~ 10 m~3 is attained inside the sep-
aratrix for the X point configuration that is shown in the companion paper (Fig.
2(a)) [4]. The electrons having the directed energy of 2 keV are launched from an
electron gun which is placed by 4.5 cm inside the separatrix. In the experiments,
no disruption of pure electron plasmas is observed. Both stronger poloidal fields
B, and a shear effect of magnetic fields result in higher n. inside the separatrix,
while only few electrons can be confined by purely toroidal magnetic fields B,. Such
a shear effect can be recognized from Fig. 4 in Ref. [2] on which —® inside the
separatrix is about 50 V without B, and, as B, is applied, significantly increases
up to ~ 500 V (B; ~ 25 G). This result might be attributed to the suppression
of microturbulence by the magnetic shear. Actually, a preliminary measurement
of electrostatic fluctuations provided the frequency in range of 10° — 107 Hz with
the magnitude of 1073 of the ambient potential, and the value of ®/® seemed to
decrease as B; was applied up to 25 G. As for the particle confinement time 75 of
the electron plasmas, the value for the X point configuration is inferred to be the
order of 0.1 ms which is evaluated from the decay signal of whole currents flowing
into the chamber wall, while 1 ms for a Spherator like configuration (described also
in Fig. 2 in Ref. [4]) where two X points are on the center stack of Proto-RT.

As already shown in Table 1, the non-neutrality of An, ~ 10" m™3 is already
enough to attain extremely high-8 (> 1) at the central part of the plasmas. Thus,
a project to inject high-pressure quasi-neutral plasmas to the pure electron plasmas
is now being planned to explore the expected high-3 plasmas with flow.

In this paper, a description of the Proto-RT device and the diagnostics employed
are explained in Sec. II. In Sec. III, the first data of pure electron plasmas, focusing
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on the values of both n. and ExB flow, for an X point configuration are briefly
explained and discussed. Other detail aspects of this experiment are shown in the
following companion paper [5].

II. THE PROTO-RT DEVICE

Proto-RT, portraited in Fig. 1 of Ref. [4], was constructed in 1998 to investigate
the fundamental physics of (1) non-neutral plasmas, (2) magnetic null, and (3)
trapping of positrons or antiprotons in purely magnetic fields. The primary ob-
jective on Proto-RT is the study of toroidal confinement of pure electron plasmas
inside a separatrix. The machine parameters are summarized in Table 2.

A 1.18 m inner diameter and 0.90 m long vacuum vessel, which is made of 1.0
cm thick stainless steel (SUS304), contains an internal-ring (30.0 cm major radius
and 4.3 cm minor radius) and a center stack with 11.4 cm outside diameter. The
internal-ring, 6 mm thick stainless steel, has one toroidal and four poloidal cuts
which present to help smooth flux surfaces around the ring. Inside the ring, there
is a 175 turn copper wire with 3.2 mm diameter to produce dipole fields (DF), and
each of which is stiffen together with an epoxy. Two copper veneers are inserted into
the coil as fins. Also, Freon is applied to cool the coil down. The Freon circulates in
toroidal direction of the coil through a quarter-inch stainless tube that is attached
to the fins. Furthermore, He, gas is filled up inside the ring to promote the heat
conduction there. Both the tube and the gas are introduced in the internal-ring
through the same bus-bar. In fact, there are two bus-bars on the internal-ring. The
another one is used to energize the coil. To hold the ring with the bus-bars, a set
of eight stainless steel rods having 3 mm diameter is used to connect the ring with
the center stack. A ceramic tube covers each rod.

The inner diameter of the center stack, 4.0 mm thick stainless steel, is 10.6 cm
through which a set of six toroidal-field (TF) coils passes in order to carry poloidal
currents, being linked with the vacuum vessel. Each TF coil has ten-turn which
is made of copper boards (1 mm thick each), and is cooled down by water. A
vertical-field (VF) is added to produce a magnetic separatrix. Proto-RT uses three
DC power supplies, (1) TF: 50 V, 500 A, (2) DF: 60 V, 60 A, (3) VF: 60 V, 30 A
x 2, to form a well-controlled static B. By properly programming these currents,
we can flexibly create various B configurations as shown in Fig. 1. The vacuum
vessel is pumped down to (3—4) x 10~7 Torr for the present experimental research.
In Proto-RT, radio frequency of 13.56 MHz (up to 1 kW) is available to launch an
electromagnetic wave to the plasmas through a toroidal loop antenna having 1.0
m diameter. An electron gun is installed at z = 0 to inject electrons which can be
accelerated up to 2.0 kV. The head of the gun is movable in not only the radial
direction but also the tangent plane perpendicular to the r — z plane.

Regarding to diagnostics of Proto-RT, two potential probes are now used to
measure electrical potentials —® of pure electron plasmas from which the value of
electron density n. can be calculated. An array of probes having semiconductor
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TABLE 2. Principal parameters of Proto-RT.

Vacuum vessel (SUS304) Inner diameter 1.18 m
Height 0.90 m
Thickness 1.0 cm
Internal ring (SUS304) Major radius 30 cm
Minor radius 4.3 cm
Thickness 6 mm
Coil wire 175 turn (copper)
Wire diameter 3.2 mm
DC power supply 60 V, 60 A
Magnetic field strength 10-100 G
Cooling method Freon with He,
A pair of vertical coil Diameter 180 cm
Coil wire 175 turn in each (copper)
Wire diameter 3.2 mm
DC power supply 60 V, 30 Ax2
Magnetic field strength 45 G
Cooling method Air
Six toroidal coils Wide 111 cm
Height 232 cm
Coil board 10 turn in cach (copper)
Board thickness 1 mm
DC power supply 50V, 500 A
Magnetic field strength 120 G
Cooling method Water
Center Stack (SUS304)  Diameter 11.4 cm

tips and electrodes are installed to determine static B and E simultaneously. A
conventional Faraday cup is used to provide electron energy E,. Also, a directional
Faraday cup is now being designed to measure precise electron flow flux n.vy inside
the separatrix.

III. FIRST RESULTS AND DISCUSSION

Since the TF coils were completed, we have performed the first series of experi-
ments to confine pure electrons inside the separatrix. In this experiment, electrons
are injected by 4.5 cm inside the X point. Data in Fig. 1 is a typical radial profile
of electrostatic potential ®(r) measured at the midplane (z = 0). The value of —~&
is about 500 V at r = 0.43 m, and decreases rapidly to 0 V at both r = 0.36 m
and 0.54 m. These edges may be determined by the magnetic well produced by B,
having diffusive region around the X point, although not proved rigourosly. One
notes that several peaks can be recognized on the profile. Those are caused by
beam components of injected electrons circulating inside the separatrix. In fact,
they strongly hit the surface of the probe with faster directed velocity, resulting in

larger particle flux on the probe.
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FIGURE 1. Radial profile of electrostatic potential & measured by a potential probe. Electron
density n., being calculated from the dashed curve which fits to @, is also described.

Assuming there is no positive charges inside the separatrix, the value of n. can
be numerically calculated from Poisson’s equation: A® = —en./er. The dashed
curve, shown also in Fig. 1, is the radial density profile n.(r) for the same shot.
Here, it should be noted that a polynomial function was used to fit the raw data
and then differentiated twice to obtain n.(r) in order to avoid any numerical errors
due to the spiky profile. As can be seen from the obtained profile, the value of
n. is the order of 10 m~3, being already beyond the critical value to produce
strong ExB flow (as already described in Table 1). In fact, as can be seen in
Fig. 2, the toroidal (shear) flow v, in Proto-RT is evaluated to be up to 9 X 108
m/s. Here, the values of B measued by three dimensional Hall probes are provided
by another vacuum shot. Thus, if this non-neutrality is achieved in a nonneutral
plasma (ng ~ 10" m~2) with excess electrons (An, ~ 10 m™%), such flow would
be even faster, because B should be excluded away more from the plasma internal
region by the ion diamagnetism, resulting in faster ExB flow.

Finally, since Proto-RT is not a linear machine but a torus device, the question
should be asked on the confinement properties of the toroidal electron plasmas. We
have tried several methods to measure 7y of pure electron plasmas trapped inside
the separatrix. However, no reliable data is so far obtained. As one of the methods,
electron particle flux flowing into the chamber wall was directly measured, since
once the electrons escaped from the separatrix, they were expected to rapidly draw
into the chamber wall along magnetic field lines. The decay time of the flux was
the order of 100 pus, however, this was still insufficient to conclude 7y < 1 ms. This
is because the signal of the flux seemed to reflect only the beam components of
electrons circulating inside the separatrix. Since the plasma volume is about

409




E/B,) (x10° m/s)

v {

Separatrix .
| ] I 1 1 ‘ 1

0.40 0.45 0.50
r (m)

FIGURE 2. Toroidal flow velocity v; expected in Proto-RT when An, ~ 10'®> m~3. Note: the
value of vy for ng ~ 10'® m~3 is about 10° m/s in Proto-RT.

~ 1072 m3, the total charge Q confined inside the separatrix is estimated to be 10~#
C. Suppose that @ flows out even in such a short confinement time (~ 100 us),
the expected current on the wall would be the order of 0.1 mA too small to be
distinguished from the beam current which is about 7 mA. Thus, an electron particle
detector is now considered to directly measure the number of electrons inside the
separatrix.

ACKNOWLEDGMENTS

This work is supported in part by a Grant-in-Aid from the Ministry of Education,
Science and Culture (Monbusho) in Japan, No. 11780343.

REFERENCES

1. Mahajan, S. M. and Yoshida, Z., Phys. Rev. Lett. 81 4863-4866 (1998).

2. Yoshida, Z, Ogawa, Y., Morikawa, J., Himura, H. et al., “Toroidal confinement of
non-neutral plasma” in Proceedings of 17th IAEA Fusion Energy Conference, IAEA-
CN-69/ICP/10(R), Yokohama, Japan, October 1998 (to be published).

3. Yoshida, Z. et al., Phys. Rev. Lett. 81 2458-2461 (1998).

4. Yoshida, Z., Ogawa, Y., Morikawa, J., Himura, H. et al., “Toroidal magnetic confine-
ment of non-neutral plasmas” in this proceedings.

5. Nakashima, C., Yoshida, Z., Morikawa, J., Himura, H. et al, “Experiments of pure
electron plasmas confined in toroidal geometry” in this proceedings.

410



Experiments on Pure Electron Plasmas
Confined in a Toroidal Geometry

Chihiro Nakashima, Zensho Yoshida, Junji Morikawa,
Haruhiko Himura, Hidekazu Kakuno, Shigeru Tahara,
and Norihisa Shibayama

University of Tokyo, Graduate School of Frontier Sciences,
Tokyo, Japan 113-0033
University of Tokyo, High-Temperature Plasma Center,
Tokyo, Japan 113-8656

Abstract. The toroidal magnetic trap has an advantage in achieving long orbit
lengths, which allows us to apply a slow process of energy reduction to the trapped
particles. On Proto-RT (Prototype Ring Trap), we have demonstrated the confinement
of a pure electron plasma without the help of external electric fields. We have injected
electrons with the energy of 2 keV inside a separatrix. The electrostatic potential of
the electron cloud is of order 100 V. The corresponding density of the electron plasma
is calculated to be of order 101 m=3. In order to modulate the kinetic energy of the
electrons we are now planning RF assisted injection of electrons.

I INTRODUCTION

There are many applications of toroidal confinement of nonneutral plasmas. In
the toroidal geometry, no external electric field is required to trap charged particles.
Also, the connection length, which is a length between the source and the sink of
the particle, is essentially much longer than in linear devices. Those properties
allow us to confine high energy charged particles, such as antiparticles, with a
slower method to decrease the kinetic energy of the particles. On the other hand,
in the linear device, the orbit lengths of the particles are so short that we must
rapidly reduce the kinetic energy of the particles below the external electrostatic
plug potentials at both ends of the device.

The most critical difficulty in the toroidal trap is that the particles must propa-
gate across the magnetic fields to be confined inside a separatrix. In order to cause
such a cross-field inward diffusion, we have proposed to use the effective scattering
at a magnetic null (B = 0) [1], on which adiabatic invariants are not conserved.
The effects of the scattering in Proto-RT have been numerically studied [2,3], and
in fact, the particles are trapped inside the separatrix; the connection length of

CP498, Non-Neutral Plasma Physics IlI, edited by John J. Bollinger, et al.
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the particles significantly increases if the particles are injected so as to pass by the
magnetic null. As an another application, the toroidal nonneutral plasma has been
proposed as a high-# plasma source [4,5], and the theoretical background of the
concept is explained in the companion paper [6].

The aim of this paper is to show the advantage of the toroidal trap and to
show the first experimental results of a pure clectron plasma trapped in Proto-RT.
The basic ideas of the toroidal trap and the numerical simulations for Proto-RT
are described in Sec.Il. In Sec.III, we show the first experimental results of pure
electron plasmas on the device. Finally we discuss the results in Sec IV,

II APPLICATION OF CHAOS FOR PLASMA TRAP

Connection lengths of charged particles can be significantly long when the source
of the particles is placed just on the separatrix in the toroidal trap [3]. The im-
portant point is to make a magnetic null, on which both the first and the second
adiabatic invariants of the particles are not conserved. As a result, increase in
the degree of freedom brings about chaos of particle motion, which enables a par-
ticle to have a very long orbit before it comes back to the particle source. The
chaos yields an effective collision-less diffusion of charged particles from the parti-
cle source towards the confinement region. Once the particle is decelerated into the
confinement region, it will be trapped by the closed magnetic field. Moreover, In a
toroidal magnetic trap, due to the long orbit length, we can apply an RF electric
field to impart non-adiabatic effects to the particles and induce a more enhanced
collision-less diffusion of particles toward the confinement region (see Figure 1). In
Fig. 1, we calculate the orbits of electrons, with energy of 1 keV, emitted from an
electron gun that is placed outside the separatrix. Fig. 1 shows the projection, onto
a poloidal cross section, of a typical orbit of an electron. Without the help of an RF
electric field, particles escape along the open magnetic field outside the separatrix
(Fig. 1(a)). If we apply a uniform toroidal RF electric field with amplitude of 100
V/m, the electron enters into the confinement region and stay there for a long time

(Fig. 1(b)).

(a) Without RF electric field (b) With RF electric field
(100 V/m, Uniform)
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FIGURE 1. Calculated typical orbits (projection onto a poloidal cross section). The injected

electron can be trapped due to the non-adiabatic effect of RF electric field.
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III EXPERIMENTS ON PURE ELECTRON PLASMA

We have conducted the experiments on the Proto-RT device shown in Fig. 2(a).
The typical base pressure is about 5 x 1077 Torr in the present experimental
research. The principal parameters of Proto-RT are explained in detail in the com-
panion paper [5]. On Proto-RT, several closed B configurations can be produced
as described in Fig. 2 in [7], and we have examined the confinement properties
on each B configuration. However, due to the page limit of this paper, we will
show only the data on the X-point configuration. In the X-point configuration, we
produce an X point outside the internal conductor as shown in Fig. 2(b). The
typical strength of the magnetic field B is about 100 G inside the separatrix. The
electron gun is placed on the midplane (z = 0) 4.5 cm inside the separatrix to
inject electrons. The electrons can be accelerated up to 2.0 keV. The electrons are
injected 45 degree against the midplane (and tangentially to the -z plane) in this
experiment. The beam current of the electron inside the separatrix is about 10 mA.
We have measured the electrostatic potential ® profiles in both r and z directions
in three different combinations of toroidal (B;) and poloidal (B,) magnetic fields,
that is, (1) purely B;, (2) purely By, and (3) B, + B,. Data in Fig. 3(a) are typical
radial profiles of ®(r) measured at the midplane.

In the case of (1), as can be seen the profile in Fig. 3, the value of -® is almost
0 V, which indicates that electrons can not be confined by only B;. This can be
understood from the particle’s orbit described in Fig. 4. In the case of (1), the
injected electron moves upward along Z axis by V B drift.

In the case of (2), the value of -® is about 50 V at r ~ 40 cm, and gradually
decreases to 0 V at 7 ~ 50 cm. Here one notes that the separatrix is at 7= 51 cm in
this configuration. Thus, the edge of -® is probably determined by the separatrix.
On the other hand, at 7 ~ 36 cm the inner edge can be seen in the profile. This
may be determined by the fact that the particles cannot approach there due to
stronger B near the internal conductor placed at r = 34 cm.

In the case of (3), the value of -® significantly increases up to -550 V at r = 43
cm. And the value of -® drops to 0 V at both 7 = 36 cm and 54 cm. This improved
result should be due to magnetic shear effects which actually seem to suppress ® /
® in the recent experiments [5].

Figure 3(b) shows ®(z) at r = 46 cm. Clearly, distinct sharp edges of ®(z) can
be recognized at both z = 4 cm and z = -5 cm on the separatrix, while not so
sharp in ®(r) profiles shown already in Fig. 3(a). The reason of this difference is
unknown. However, it might be attributed to the existence of the X-point at z =0
where particles are immediately diffused because of B = 0. In the case of (3), the
inferred electron density is of order 10'* m~3. Finally, in both ®(r) and ®(z) for B,
+ B, case several spikes can be recognized. This is caused by the beam component
of electrons as already experimented in [5].
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Figure 4 shows the electron orbits on R-Z plane for the corresponding three cases
of Fig 3. As already explained, in the casc of (1), the electron causes V B drift
along the z axis.

In the case of (2), the injected electron goes into the separatrix, but then escapes
through the X point after reflecting at a magnetic mirror at (r,z) = (27,-6).

In the case of (3), the electron is almost completely trapped inside the separatrix.
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FIGURE 3. Electrostatic potential profiles in r and z directions.
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FIGURE 4. Calculated electron orbits.

An electrostatic probe has been installed to measure electron temperature T,
and electron density 7, inside the separatrix. Figure 5 shows the I-V characteristic
taken from the probe at (r,2) = (46,5). As can be seen the profile, no ion saturation
current is measured, probably due to no ions. The value of T is estimated to be
62 eV, while 2 keV of the injected energy of the electrons. This suggests that
the electrons are thermalized inside the separatrix by the expected non-adiabatic
effects.

When the value of retarding potential is 0 V, the value of the probe current
is about 1 pA. From the equation of current I = en.vS/4, where e is a charge
of the electron, n. is the density, and v is the speed of the electron and S is the
cross section of the probe, the value of the particle flux n,v is calculated to be 10%°
m-2-5-1. If v is about 5 x 106 m/s (60 eV), then n, is about 2 x 10" m~3, which
is consistent with the ® measurements as already shown in Fig. 3.
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FIGURE 5. I-V characteristic of electrostatic probe measured in pure electron plasma on
Proto-RT at (r,2) = (46,5) for X-point configuration.
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IV SUMMARY

We have demonstrated the toroidal confinement of high energy electrons with
initial energy of 2 keV by pure magnetic fields on Proto-RT. The electron plasma
is essentially confined by B,. B; can work only when B, is applied to confine the
electrons. The electrostatic potential of the electron plasma with B, and B, is
measured to be about 600 V for X-point configurations. The value of n, and T,
of the plasma are of order 10" m~% and about 60 eV, respectively. We arc now
planning the RF assisted injection of electrons.
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Abstract. A toroidal device has been constructed and nonneutral plasma experiments have
been intensively promoted, where an internal ring coil with a copper conductor has been
employed. We are now designing a toroidal plasma trapping device with a levitated super-
conducting internal coil, so as to avoid plasma loss through current-lead and support structures
of the internal coil. Typical machine parameters are as follows; the major radius of the internal
ring coil is 40 cm and the coil current is 500 kA. Concerning to the levitated coil, the high-
temperature (high-Tc) super-conducting coil is preferable for plasma experiments, because long
pulse and/or high power heating experiments might be available due to the good property for the
thermal stability and large heat capacity of the high-Tc super-conducting coil. Our primary
candidate is Bi-2223 super-conducting cable. Since the maximum magnetic field strength is
around 2 T in our device, the deterioration of the critical current is not so severe up to 40 K.
We are now promoting a detailed design of the toroidal device with a high-Tc super-conducting
internal coil.

Introduction

Nonneutral plasma trapping with a toroidal device has many advantages in
comparison with conventional linear device, and a toroidal device with an internal
ring has been proposed. ' A proto type device (call Proto-RT) has been
constructed and experiments of nonneutral plasma trapping has been carried out. 2
Electrons are injected into the toroidal device, and the buildup of the electric
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potential up to a few hundreds volts has been observed. **  Since nonneutrality of
plasma yields a radial electric field, strong toroidal rotation of nonneutral plasma is
induced with the combination of the poloidal magnetic field. By introducing
additional poloidal field with external poloidal coils and toroidal field, it is also
possible to study trapping properties of nonneutral plasma for various
configurations of magnetic surface.

Since the internal ring of the Proto-RT device is made of normal copper coil,
the device should be equipped with the coil current feeder and the coil support rod,
which intersect with the magnetic surface. Therefore, the life time of nonneutral
plasmas might be limited by the interaction with these concrete obstacles. If the
internal ring would be super-conducting levitating coil, we are free from these
problems. In addition, relatively strong magnetic field might be available with the
super-conducting coil, since the coil current density could be increased.

Here we have designed a toroidal device with a levitated super-conducting
internal coil for the nonneutral plasma trapping experiments. From the
viewpoints of plasma experiments and machine operation, high temperature (high-
Tc) super-conducting coil seems to be very attractive. We have, therefore, paid
much attention to the feasibility of the high-Tc super-conducting conductors as the
levitated internal ring coil.

We have mainly two purposes with this internal ring coil device; one is
nonneutral plasma trapping, and another is ultra high beta plasma confinement.
The latter purpose is dominantly devoting to fusion plasma study. S.M. Mahajan
and Z. Yoshida have found a new relaxed state under the strong plasma flow, and
claim that the confinement of the extremely high beta plasma might be possible. °
This internal ring device is quite feasible to study this new relaxed state.
Therefore, in designing the super-conducting coil device, we have taken high
power plasma heating into account, as well.

OUTLINE OF THE DEVICE

Figure 1 shows a schematic view of the device, which is composed with
levitated internal ring coil, several poloidal field coils and toroidal field coil.
Various magnetic field configuration can be produced by the proper combinations
of these coils. Some other coils such as feedback coil and charging coil system
for the levitated coil are omitted in this picture.

The basic specification of the levitated internal ring coil is as follows; the
major radius of the coil is 40 cm, and the coil current is 500 kAT. The minor
radius of the coil might be around 10 cm. The maximum magnetic field strength
is estimated to be ~ 2T around the conductor. It is expected that the internal ring
coil is levitating during a few hours or more. We have to carry out feedback
control of this levitated coil, because there exists an unstable mode even for any
levitation scenario. We should notice that there existed several levitated internal
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coil devices in the 1970’s for the fusion plasma study and position control within
less than 0.1 mm has been achieved. ®

FIGURE 1. Schematic view of a toroidal device with a levitated ring coil.

The internal ring coil produces the dipole magnetic field. By combining
external poloidal field coils, several magnetic field configuration is available; for
example, the plasma trapping configuration bounded with the magnetic separatrix
located at the outer (or top/bottom) region of the torus can be produced. The
toroidal field coil is equipped so as to introduce the magnetic shear. Some
instabilities of nonneutral plasmas such as diocotron instability might be stabilized
by the magnetic shear.
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FEASIBILITY STUDY OF HIGH TEMPERATURE
SUPER-CONDUCTING COIL FOR A LEVITATED RING COIL

There were, in the past, several experiences of construction and operation of
levitated coils with a low temperature super-conducting cable, ® and a new large
device is now under construction.” If a high-Tc super-conducting cable could be
employed as a levitated ring coil, it seems to be quite attractive from the viewpoints
of plasma experiments and machine operation. Advantages of high-Tc super-
conducting coils are summarized as follows;

@ Large heat Capacity; t.e., specific heat capacity at 20-40 K is around 100
times as high as that at 4 K.
-> High power and/or long pulse plasma heating experiments will be
available.
- Thermal stability of super-conducting coils will be improved, and
thermal quench might be avoidable.
@ High Cooling Efficiency of refrigerators; i.e., the efficiency of refrigerators at
20-40 K is around 10 times as high as that at 4 K.)
- Easy maintenance and remarkable reduction of operation cost

At present, a Bi-2223 Ag-sheathed multifilamentary wire seems to be a most
promising candidate for high magnetic field coil. For example, a 7T solenoid coil
with an averaged major radius of 17.6 c¢cm and 1.5 MAT has already been
constructed ® and a large coil with the outer diameter of 120 cm is now fabricated. °
Bi-2223 is a thin tape (typically, 3.5mm X 0.24mm) and the critical current density
strongly degradates as the magnetic field is increased at the relatively high
temperature regime (e.g., T > 40 K). There exists a residual voltage of the high-
Tc super-conducting coil, and n-value around the critical current density is
relatively small.  We should, therefore, pay attention to the coil current decay due
to the residual voltage.

Operation temperature regime is set to be between 20K to 40K or less.
During levitating operation for a few hours the heat input energy to the levitated
internal ring coil should be compensated with the temperature increase of the
structural materials of the coil. So as to increase the heat capacity of the coil itself,
some heat reservoir with the large heat capacity should be equipped; e.g., lead,
cooled helium and cooled nitrogen. Here we have roughly estimated the
feasibility of the cooled nitrogen as a heat reservoir.  The specific heat capacity of
the nitrogen is p = 19.87 J/K/mol at 20 K.  If the cooled nitrogen with 2 kg weight
is introduced and the temperature increase from 20 K to 40 K is tolerable, the total
heat capacity energy becomes 41.2 kJ. This large heat capacity might make it
possible to carry out high power and/or long pulse plasma heating experiments.

Based on these considerations and fabrication experiences, a levitated coil
has been designed with a high-Tc super-conducting cable. Basic parameters are
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listed in Table 1.

TABLE 1. Design Parameters of High Temperature Super-conducting Coil

coil major radius : R=40.0cm
rectangular cross section : axb=10cmx 10 cm

conductor with one tape

conductor size : 0.3mm x 3.5 mm
total turns : 250 x 25 = 6,250 turns
total conductor length : d=157km
conductor current : JIop=80 A
operation temperature : T=30K
stored energy of the coil : Wmag = 145 kJ
coil inductance : L=454H
maximum magnetic field : Brmax=168T Bzmax=223T
tension stress : G =60 MPa
total resistance of coil : Rq=2.8 pQ)

> flowloss : Quow = 17.9W

- current decay time : 7= 4.5 hours

From these figures, we could conclude that the levitated internal ring coil might be
designed with the high-Tc super-conducting cable.
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The Penning Fusion Experiment - Ions

M.M. Schauer, K.R. Umstadter, and D.C. Barnes

Los Alamos National Laboratory

Abstract. The Penning fusion experiment (PFX) studies the feasibility of
using a Penning trap as a fusion confinement device. Such use would
require spatial and/or temporal compression of the plasma to overcome the
Brillouin density limit imposed by the nonneutrality of Penning trap
plasmas. In an earlier experiment, we achieved enhanced plasma density at
the center of a pure, electron plasma confined in a hyperbolic, Penning trap
by inducing spherically convergent flow in a nonthermal plasma(1,2,3). The
goal of this work is to induce similar flow in a positive ion plasma confined
in the virtual cathode provided by a spherical, uniform density electron
plasma. This approach promises the greatest flexibility in operating with
multi-species plasmas (e.g. D*/T*) or implementing temporal compression
schemes such as the Periodically Oscillating Plasma Sphere of Nebel and
Barnes(4,5). Here, we report on our work to produce and diagnose the
necessary electron plasma.

INTRODUCTION

A series of experiments is under way at Los Alamos National Laboratory to
investigate the usefulness of Penning traps as fusion confinement devices. Such
devices are attractive due to their excellent confinement times, with storage of charged
particles stretching easily to hours. Unfortunately, due to the nonneutral nature of the
plasmas the densities attainable are severely limited, the limiting value being the
Brillouin limit. This would seem to restrict the usefulness of these systems for fusion
confinement. However, this limitation is a global one, and it is therefore possible to
exceed it over some limited spatial region while the average density remains well
below the Brillouin limit. The goal of these experiments is to demonstrate such
plasma compression.

Initial experiments concentrated on compression of a nonthermal, pure electron
plasma in a traditional, hyperbolic Penning trap. Proper tuning of the trap electric and

CP498, Non-Neutral Plasma Physics 1, edited by John J. Bollinger, et al.
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magnetic fields assures that the periods .of the radial and axial oscillations of the
electrons are such that any orbit originating at the trap center will necessarily return to
the trap center. A collection of zero or near-zero angular momentum electrons in such
a trap will thus form a dense core plasma as their orbits converge on the trap center,
thereby possibly exceeding the Brillouin limit. Note that unlike the fully thermalized
case, where the space charge of the trapped plasma can at most cancel the vacuum
fields, the center of a trap containing such a focused, electron plasma can actually be
charged negatively thereby producing a virtual cathode. Such convergent flow and the
resulting density focus were conclusively demonstrated by the Penning fusion
experiment (PFX) which is described in detail elsewhere(1,2,3).

Note that a plasma of particles undergoing such convergent flow is spherical in
shape. That this is so can be seen by observing that, in a reference frame rotating at
one-half the cyclotron frequency, electrons see an effective well which is spherical and
purely radial. In this picture, the focusing is due to reflection at the spherical wall,
hence producing a spherical plasma. Alternatively, it follows from the restriction
placed on the periods of the axial and radial motions that, for equal energies, the radius
of the motion in the radial plane is half the axial amplitude.

To be interesting as a fusion reactor, a storage device must have the flexibility to
trap and compress multi-component plasmas, e.g. D*/T", to high densities and must be
able to do so at high energies. Use of convergent orbits produced by the vacuum
trapping fields of a Penning trap is restricted to plasmas consisting of a single charge-
to-mass ratio, since the frequencies of the radial and axial orbits depend differently on
g/m. This precludes simultaneous focusing of charged species such as D* and T*. The
end result is that the Brillouin-limited density of the unfocused species will limit the
reactivity.

However, it is possible to trap positively charged ions in the virtual cathode
produced by converging electrons. The sphericity of the electron plasma assures that
any trapped ions will be focused to the center of the virtual cathode regardless of g/m
thus allowing for high ion density in a multi-species plasma. Alternatively, one could
attempt to produce a spherically symmetric, uniform density electron plasma. This
charge distribution would provide a harmonic well for ions allowing one to
parametrically drive the ions by modulating the electron density. This system has
been investigated theoretically by Barnes and Nebel(4,5), and the requirements on the
electron distribution function are discussed later in this article. Demonstrating
trapping of positive ions in a virtual cathode produced by an electron plasma is the
goal of the present experiment, the Penning fusion experiment — ions or PEX-1. The
remainder of the paper deals with this experiment

EXPERIMENTAL APPARATUS

As mentioned in the introduction, it is necessary to trap ions at high density and
energy. This requires that, in addition to being spherical to a high order to produce the
desired convergence, the electron space-charge field producing the virtual cathode be
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as large as possible. Any injected ions will then be accelerated to high energy at the
trap center by the large gradients produced by the virtual cathode. In order to produce
this large space-charge field, the trap confining the electrons must therefore be
operated at high voltage (~100 kV).

In order to increase the voltage standoff of our trap, we have modified the standard
electron Penning trap geometry significantly. Chief among the modifications is the
increased separation of the endcaps and the anode as well as the non-hyperbolic shape
of the surfaces of these electrodes. A schematic diagram of the trap is shown in figure
1, and the trap is described in detail below.

The electron beam in PFX-I is produced by a hairpin, Tungsten filament located
inside a stainless steel electrode, which serves as both the upper endcap of the trap and
a suppressor electrode for the electron gun. The electrode is mounted to one of three
pins on a high voltage feedthrough, the other two pins being used to deliver heater
current to the filament. All three pins are nominally at the trap high voltage, V.,
although the filament leads are held at some small positive voltage, Vp~1V, with
respect to the upper endcap. The apex of the filament is located roughly 3 mm behind
the front surface of the upper endcap electrode and in the center of an approximately 4
mm diameter hole.

Emission from the filament is enabled by field penetration from the high voltage.
Hence, there is some positive cutoff voltage with respect to the upper endcap,
proportional to V,, above which emission into the trap ceases, and the beam can be
turned on or off quickly (~10 ps) by setting Vi, below or above this cutoff voltage. In
this configuration, the potential across the plane of the hole in the upper endcap has a
minimum (in the absolute value sense) at R=0, i.e. the trap axis. Electrons reflected
back by the lower endcap, as described below, are then able to escape axially only in
some small cylindrical volume centered at R=0.

e Anode
J
@ Lower

endcap
Ecj .
@ Collector

FIGURE 1. Schematic of the trap showing the upper endcap (UEC), the anode, lower
endcap, drift tube (DT), and collector. A cutout in the UEC reveals the Tungsten
emitter and beam exit hole. The drawing is not to scale.
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Figure 2. Electrical schematic of the trap apparatus.

For the initial tests described here, the anode consists of a stainless steel block
roughly 18 mm thick with a 2 mm diameter hole through its center. The gap between
the upper endcap and anode is 5.8 cm. The anode is maintained at ground potential,
and electron current flowing to it can be monitored by means of an electrical lead
exiting the vacuum system through a low voltage feedthrough. This enables us to
monitor alignment of the trap axis with the magnetic field axis. Figure 2 contains an
electrical schematic of the apparatus.

Approximately 3 cm below the lower surface of the anode is a 60% transparent
grid which serves as the lower endcap or reflector. This electrode is maintained at
sufficient negative voltage to reflect the electron beam and maintain axial
confinement, but can be switched to ground potential with a variable time delay
relative to the positive voltage ramp that halts electron emission from the filament.
Trapped electrons then escape to the collector, which is monitored by an oscilloscope.
The resulting pulse on the collector is the sum of two distinct signals. A background
pulse arising from capacitive coupling of the lower endcap discharge pulse is summed
with the electron arrival signal

Between the lower endcap and the collector is the drift tube. The drift tube is
maintained at a fixed potential throughout the trap operation thereby decreasing the
amplitude of the capacitive component of the collector signal. Nevertheless, before
‘any electron data is taken a background pulse is attained by switching the lower
endcap voltage with no electron beam in the trap. This background signal is
subtracted from the full collector signal to retrieve the electron signal. Integration of
the electron signal then gives the trap inventory.

The entire trap is contained within an ultrahigh vacuum system with operating
pressure of roughly 3x10°® Pa maintained by a 50 I/s ion pump. The vacuum system
then inserts into the room temperature bore of a superconducting magnet capable of
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producing fields up to 7 T, although for the experiments reported here the fields used
were less than 2 T.

The high voltage for the upper endcap and electron emitter is provided by a rack
mounted 100 kV supply. This supply is used to float an instrument rack, which
contains the filament current and bias supplies and various current monitoring devices,
to high voltage. The rack is powered by an isolation transformer immersed in
dielectric oil, and control of the instruments is via optical modems and fiber optic
cable.

The experiments reported here were limited to low voltage (S 3 kV) as it was
necessary to switch the lower endcap between: ground and trapping voltage by means
of a relay with limited voltage standoff. Additionally, the voltage was supplied to the
lower endcap by means of a vacuum feedthrough with maximum voltage rating of 5
kV. In future experiments we envision grounding the lower endcap by means of a
high resistance (10 GQ), high voltage resistor. The lower endcap will then charge to
the same voltage as the upper endcap by means of the electron beam impinging on it.

RESULTS AND DISCUSSION

We have measured the trap inventory, N, as a function of trap voltage, V,, and
have made initial measurements of inventory as a function of magnetic field. The
inventory is measured immediately after the electron beam is switched off and is
corrected for such systematic effects as the transmissivity of the lower endcap grid. In
figure 3 one can see a linear dependence of the inventory on voltage.

The trap lifetime was determined by measuring the trap inventory as a function of
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FIGURE 3. Total trap inventory as a function of the trap voltage. The best fit to the
data, shown by the solid line, is linear in trap voltage.
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Figure 4. Trap lifetime for various trap voltages and magnetic fields. The solid
symbols are all for V, = 400v, and open symbols are V, = 200v. Magnetic fields
are as follows: triangles B=1.14T, squares B=0.76T, and circles B=0.38T.

delay from the cessation of electron injection into the trap. Figure 4 shows the
lifetime curves for different trap voltages and magnetic fields. We find a ¢’ time of
roughly 100 ms. The poor lifetime of the trap is undoubtedly due to misalignment of
the trap and magnetic field axes and perhaps also to the unconventional trap geometry.
Note that the data in figure 4 show a definite dependence of the trap inventory on
magnetic field, but there is not sufficient data to conclusively determine the scaling.
Also, it is not possible to determine the scaling of trap lifetime with magnetic field due
to the paucity of data.

In general, the electron inventory is determined by a balance between injection
rate, i.e. current into the trap, and loss rate. Thus, N =1; ©/ e, where I; is the injection
current, T the confinement time, and e the elementary charge. There are two modes of
electron confinement, depending on electron space charge potential compared to
applied voltage. Suppose first that space charge is small. Then I; is determined by the
source parameters, and T is determined by trap confinement. In the opposite limit,
when space charge potential approaches the applied voltage V,, the voltage at the
filament is decreased by the space charge potential of the electrons in the trap thereby
decreasing I. In this limit, N is determined by the electrostatic solution which gives
space charge potential equal to V,, and I; adjusts toe N / 1.

The scaling of electron inventory with magnetic field B, V,, and source parameters
may be calculated in various operating regimes. The calculation is simplest in the
space-charge dominated confinement regime. In this case, N o V,, and independent
of T and, thus, B and source parameters. This rests on the assumption that the electron
cloud will assume a density profile that has the same functional form (Gaussian, for
example) across the entire radius of the trap regardless of B, so that the peak density,
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and hence N, is proportional only to V,. In the low space-charge potential case,
several scalings of both I; and T with the control parameters are possible. I; may be
emission limited, giving a scaling of N with heater current applied to the emitter.
Alternatively, I; may be limited by the space charge in the gap between the emitter and
the UEC. In this case, I; o AVb3’ 2/d2, where AV, is the difference between the cutoff
value (proportional to V,) and the bias voltage, Vy, applied to the emitter-UEC gap,
and d is the effective gap distance.

Similarly, T may be determined by axial loss (in case electrons are collected near
the UEC) or by radial loss (to the anode). Axial electron loss may be characterized by
the number of recirculations, N;, of a typical electron injected from the UEC system.
This number will generally be large, because the acceptance aperture of the UEC for
trapped electrons is typically small compared to the radial dimensions of the electron
cloud. Thus, only some fraction of electrons travelling upward within the trap will be
able to enter the UEC and be collected (if f; is this fraction, N, = 1/f;). If axial losses
dominate confinement, T o< N,/Vo” 2, since the axial bounce time is inversely
proportional to the electron velocity. The velocity itself scales as the square root of
the energy, which is in turn proportional to V,. Radial losses are believed to be
dominated by misalignment errors in PFX-1. Previous studies of such transport(6)
have shown a scaling T e< (B/L)* in long, low-density electron traps, where L is the
length of the plasma. In the case of PFX-I, L is fixed, so T o< B? would be expected.
Table 1 summarizes the expected scalings.

Based on the linearity of the trap inventory with voltage, it would seem that the
trap is operating in the space-charge limited mode. In this case, according to the
discussion above, we would expect to see no dependence of the inventory on the
magnetic field, but as was pointed out previously, the data in figure 4 show a definite,
if poorly characterized, dependence of N on B. This discrepancy is as yet not
understood, but may be due to a deviation of the electron density profile from the
universal one mentioned previously.

TABLE 1. Summary of inventory scaling.

Regime Inventory
Trap filled to space- NV,
charge limit

Axial Loss Radial Loss

Emission limited N o< N o<
Trap below space-charge source Heater/V,"® | Heater*B?

limit Space-charge limited N o N <
: source AV AV 22 +B?
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FUTURE PLANS

We are presently working on several modifications to the apparatus. We have
completely redesigned the trap in order to provide better alignment of the trap
electrodes, and we are working to improve the available diagnostics. We are also
working to understand better the requirements on the electron distribution necessary to
provide an axial ion well. In this section we discuss an optical diagnostic being
installed on the trap and briefly summarize the electron distribution requirements.

Diagnostics

We are presently installing a nondestructive, optical diagnostic in addition to theé
existing destructive diagnostics. Hydrogen gas introduced into the trap volume will be
dissociated, and the trapped electrons will excite the constituent atoms. In the
presence of a significant electric field, a dipole potential term is added to the atomic
Hamiltonian, resulting in a shift of the emission lines as described by the linear Stark
effect. For Hydrogen atoms the shift is given by

__F _
AE = 15620”("1 n), (€))

where F is the electric field strength in V/cm, n is the principal quantum number, and
n; and n; are electric quantum numbers which result from separating the Schrodinger
equation in parabolic coordinates(7). This leads to a splitting of the spectral lines that
is linear with applied voltage, assuming the trap is filled to the space charge limit, and
ranges from roughly 1 A for V, = 10 kV to 10 A at 100 kV for the strongest T-
components of the Hy lines. Measurement of this splitting then can be used as an
electron density diagnostic. Note that the Brillouin density limit for electronsina 1 T
field is much larger (x100) than the 100 kV space-charge limited density.

There are several effects that can produce a competing splitting or broadening,
thereby masking the desired splitting. Chief among these is the Zeeman splitting due
to the trap magnetic field, which ranges from 0.1 A 10 0.2 A for fields ranging from 1
T to 2 T (8). Doppler broadening of the line could mask the Stark splitting, but the
Doppler width is expected to be no greater than 0.5 A for atom temperatures up to an
equivalent energy of 1 eV and less than 0.1 A at room temperature.

Electron Distribution Requirements

In order to produce an ion well depth with a usable fraction of V,, it is necessary
that electrons have a nonthermal distribution. To ascertain this, suppose the contrary
holds. Then, there is some electron temperature T, and electron density is determined



as n, exple @ / Te], where @ is the effective potential for electron confinement. @
consists of an applied electrostatic part ®¢; and a magnetic part ®s. P, vanishes
along the magnetic axis of the system, where the range of ® is at most the applied V..
For effective electron confinement then it is necessary that ¢ Vo >> T.. On the other
hand, if V; is the ion well depth, the condition that electron density vary little over the
ion well region requires that e V; << T.. Thus, thermal electrons imply that V, >>>>
Vi, and very little of the applied voltage is available for ion confinement and heating.
To maximize V;, electrons should be nearly monoenergetic (possibly in a rotating
frame). Then, electron confinement is assured for V, just equal to this electron energy
and density variation over the ion well region is only of order Vi/V,. A nearly
monoenergetic distribution may be produced by adjusting electron confinement time
to be much shorter than electron energy scattering time, and simultaneously collecting
electrons at nearly their constant (source) energy, as was demonstrated in PFX(1).

In addition to a nearly monoenergetic energy distribution, an axial ion well will
result only for a proper distribution of the electron canonical angular momentum about
the trap symmetry axis, Ps. A theoretical study based on past and present work has
identified three possible electron distributions:

1. Brillouin flow (P = O for all electrons) in which a beam distribution is
maintained so that a third invariant besides €, the single particle energy, and Py exists.
An applied electrostatic field is optional. This is the EBIT approach(9).

2. Monoenergetic, rigid-rotor electrons [f ~ 6(e- QPg - €,)] with magnetic shaping.
Here Q is the plasma rotation frequency. No applied electrostatic field is required.
This is the original PFX-I proposal(10).

3. Spherically convergent flow in a spherical, harmonic trap such that f ~ d(e)/L"?,
where L is the total angular momentum. Note that there is no Py dependence. An
applied electrostatic field is required(11).

PFX-I is currently focusing on 2 & 3 above, since the desired large electron
recirculation makes maintaining a beam difficult. While most required features of 2 &
3 have been demonstrated in PFX,(1) the exact electron source, sink, and additional
control are yet to be determined experimentally.

SUMMARY

PFX-1 has demonstrated trapping of electrons in a modified Penning trap
geometry. The trap electrodes have been spark conditioned to 75 kV, and the electron
source has been operated in a 1 T field at trap voltages up to 50 kV. The trap
inventory and lifetime have been measured at lower voltages as a function of trap
voltage and magnetic field. This data is still under study. Ongoing work is
concentrated on improving the trap lifetime and diagnostics and on theoretical

understanding of the required electron distribution necessary to produce an axial ion
well.
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Confinement Of Pure Ion Plasma In A
Cylindrical Current Sheet
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Abstract. A novel method for containing a pure ion plasma at thermonuclear densities
and temperatures has been modeled. The method combines the confinement principles
of a Penning-Malmberg trap and a pulsed theta-pinch. A conventional Penning trap
can confine a uniform-density plasma of about 5x10'em~2 with a 30-Tesla magnetic
field. However, if the axial field is ramped, a much higher local ion density can be
obtained. Starting with a 107 cm™3 trapped deuterium plasma at the Brillouin limit
(B = 0.6 Tesla), the field is ramped to 30 Tesla. Because the plasma is comprised of
particles of only one sign of charge, transport losses are very low, i.e., the conductivity
is high. As a result, the ramped field does not penetrate the plasma and a diamagnetic
surface current is generated, with the ions being accelerated to relativistic velocities.
To counteract the inward j x B forces from this induced current, additional ions are
injected into the plasma along the axis to increase the density (and mutual electrostatic
repulsion) of the target plasma. In the absence of the higher magnetic field in the
center, the ions drift outward until a balance is established between the outward driving
forces (centrifugal, electrostatic, pressure gradient) and the inward j x B force. An
equilibrium calculation using a relativistic, 1-D, cold-fluid model shows that a plasma
can be trapped in a hollow, 49-cm diameter, 0.2-cm thick cylinder with a density
exceeding 4 x 101 cm~3.

I INTRODUCTION

This paper presents a novel method for achieving a well-known goal: the confine-
ment of non-neutral ion plasmas that are adequately dense for controlled thermonu-
clear fusion applications. This approach is a subset of a wider class of experiments
known as Inertial Electrostatic Confinement experiments [1], but the question ad-
dressed here is quite specific: can the density of particles in a non-neutral plasma
[2] be increased far beyond the density associated with the Brillouin limit?

A common device used to confine a non-neutral plasma is the cylindrical
Malmberg-Penning trap [3]. Conventional magnetic fusion devices contain quasi-
neutral plasmas in a toroidal or linear geometry, but generally the confinement is far
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© 1999 American Institute of Physics 1-56396-913-0/99/§15.00

435




worse than that predicted classically. Though at first glance non-neutral plasmas
would not appear good candidates for long confinement time applications (because
of the strong, outward electrostatic forces associated with the space-charge poten-
tial), Malmberg-Penning traps have exhibited superb confinement capability. This
is because the conservation of rotational angular momentum forces the mean square
radius of a one-component plasma to remain constant in time. One-component
plasmas also have two other benefits from a practical standpoint for fusion devices:
- the absence of both radiative losses and thermal wall loading because of the sharp
radial fall-off in the density profile (typically on the order of several Debye lengths).
This superior confinement capability has not been generally realized in controlled
fusion devices, however, because conventional Malmberg-Penning traps can confine
uniform-density plasmas of only about 5 x 10" ¢cm™3, even with magnetic fields
strengths in the tens of Tesla. This is expressed as the Brillouin limit,

wy B?
2E<1 or N<W, (1)

where w, is the plasma frequency, \/4mne?/m, and w. is the cyclotron frequency,
eB/mec. At the Brillouin limit, the plasma column is rotating at wg, which is equal
to w./2. Equation (1) shows that higher density may be achieved only if the square
of the magnetic field is increased proportionally. Even at these large field strengths,
the Lawson criterion is satisfied, but with a required confinement time of nearly 1
hour.

Though most often viewed as a density limit, the Brillouin limit is a statement of
the fact that the inward j x B force must balance the outward driving forces (cen-
trifugal, electrostatic, pressure gradient). For plasmas that do not have a uniform
density, force balance can be achieved even though local values of n far exceed the
limit expressed in Eq. (1). In this paper, the simple geometry of the Penning trap is
retained; the confinement device proposed provides radial confinement through an
axial magnetic field, and longitudinal confinement electrostatically by end cylindri-
cal electrodes kept at a potential higher than the plasma’s space charge potential.
The difference is that, unlike in a conventional Penning trap, the axial magnetic
field is very non-uniform. In addition, the velocity shear in the device is very large
and the density profile is not monotonically decreasing. These two factors could
have serious consequences where the stability of the configuration is concerned.

II METHODOLOGY

A highly non-uniform field is created by initially producing a conventional, low-
density Malmberg-Penning trap plasma, followed by ramping the axial field. For
example, a uniform density, 107 cm™2 deuterium plasma might be generated at the
Brillouin limit (here, at B = 0.6 Tesla), after which the field is slowly ramped to
as high a value as is practical (here, 30 Tesla). Because the plasma is comprised
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of particles of only one sign of charge, transport losses are very low, i.e., the con-
ductivity is high. As a result, the ramped field does not penetrate the plasma as
long as the ramping time is short compared to the magnetic diffusion time. A
diamaguetic surface current is generated, and, in this example, the ions are accel-
erated to relativistic velocities, with the magnetic field outside the plasma 50 times
stronger than inside. This method is distinguished from a theta-pinch approach,
in which the inward j x B forces compress and heat the plasma. To counteract
the inward j x B forces, ions are injected along the machine axis to increase the
density (and mutual electrostatic repulsion) of the target plasma. With only the
weak magnetic field present within the bulk of the plasma, the ion density inside
the plasma column greatly exceeds the Brillouin limit and the ions drift outward.
Ultimately, a balance is established between the outward driving forces (centrifu-
gal, electrostatic, pressure gradient) and the inward j x B force, and the plasma
is trapped in a thin current sheet between its own outward electrostatic repulsive
forces and the confining magnetic field.

III EQUILIBRIUM MODELING

To determine the characteristics of such an equilibrium, a relativistic 1-D cold-
fluid model was used to model the system. Starting with the radial force balance
equation for a cold macroscopic fluid,

0B (B, + BB, @)
where
utr) = V1,

operating on it with 1/rd/dr[r...], and substituting in Ampere’s law and Gauss’
law leads to an equation for the derivative of B(r) as a function of 8(r), B,, and

0B, /or:

19B. B

% 1 B, or T 3)
ar 2B mc? 202 ’
L+ yB g (VA +2)

where
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This first order ODE is solved using Mathematica with the boundary condition
B(r = 0%) = 0. B, is specified as nearly a step function with penetration depth d..
The step is located at the surface (ro, = 49cm) of the initial low density plasma:

By = B (1 T[22 2] o

Fusion power is maximized by increasing the ion density to the greatest extent
possible. To that end, 30 Tesla is chosen for the ramped field to illustrate the
potential of this approach. An equilibrium calculation using a relativistic 1-D cold-
fluid model shows that the plasma can be trapped in a hollow, 49-cm diameter,
0.2-cm thick cylinder, whose density exceeds 4 x 10 cm™. The drawback, of
course, is the very small thickness of the current sheet, resulting in a low plasma
volume. For this simulation, the radius is maximized so that the resulting plasma
volume is as large as possible without the local velocity exceeding the speed of light.
The results indicate that 2 MW of fusion power could be produced in a 100-m long,
1-m diameter reactor. At 72 m?®, the device would be only 4% of the volume of
ITER, while a device with the same volume as ITER would produce 55 MW. In
the simulation, the thickness of the shell is set at 2 Larmor radii, i.e, the ramped
B-field is assumed not to penetrate the highly conducting ion plasma at all. The
other parameters are: B,, = 300 kG, r, = 49.0, and d, = 1.85 cm. The magnetic
field in the region of the field transition given in Eq. (4) is shown in Fig. 1.

Given the magnctic field profile, the velocity profile is uniquely determined. In
this case, the velocity is relativistic with 8 about 0.85. The rotation frequency
profile, w(r) = ¢B/r is determined from the velocity and is shown in Fig. 2. Given
the velocity profile, the density profile can be readily calculated from Ampere’s law:

1 0B,

(:—__

4mef(r) or (5)

The plasma forms a thin cylindrical shell in the region of the magnetic field
transition, which is shown in Fig. 3. The current density is easily calculated from
its definition:

j(r) = n(r)ef(r)c (6)

The very high current density (several MA/cm?, shown in Fig. 4.), confines the
plasma through the inward radial j x B force. Given the density profile, the electric
field is calculated from Gauss’ law:

E(r) = 300 x 10° -47re%/n('r’)r' dr’ (")

The self electric field generated at the surface of the plasma as calculated from Eq.
(7). is large (100’s of MV/cm). However, there is little charge or field inside the
plasma shell, as shown in Figs. 3 and 5.
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FIGURE 1. The magnetic field in the region of the surface of the initial, low-density plasma.
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FIGURE 2. The rotation frequency profile in the region of the plasma shell.
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FIGURE 3. The density profile.
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FIGURE 4. A very high current density provides the confining forces.
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FIGURE 5. The electric field in the region of the transition.
IV INCLUSION OF FINITE TEMPERATURE

To determine how the inclusion of finite temperature affects the characteristics of
the cold fluid equilibrium, a relativistic pressure gradient term, 1/nV P, was added
to the 1-D, cold-fluid model. A simplified model of pressure, with varying density
but isotropic temperature is included in Eq. (2) by adding T'/r 8/0r(r/n On/0r) to
the right hand side. Similarly, operating on this equation with 1/r 8/0r[r...] and
substituting Ampere’s law and Gauss’ law as with Eq. (2) produces a second-order
differential equation giving 8B2/dr? as a function of B(r), 98(r)/0r, B., 0B, /0r,
dB2/0r?, and OB, /0r*:

B 1 <8[39>2 eﬂg{ 1 8B, pBsB,

arz ~ B, or T Beyz Or Ty
&B.\"_9B.%°B. g,
_7: or? or ors or?
€ 8B.\* 0B:
or or
mc? T 0
- [Bz T (’Ygﬂg + 27586 + W)] ‘8"85‘} . (8)
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At the temperatures considered here (T = 80 keV), the energy associated with
the pressure gradient is only about 0.3% of the rotational energy of the ions or the
electrostatic energy associated with the space charge. Consequently, the qualitative
results of the simulation are nearly identical to the cold fluid case. The peak ion
density confined with the same field strength is identical to the cold fluid case, but
there is a small extension in the distribution of ion density towards the center of
the configuration, as seen in Fig. 6. The rotation frequency profile is stecper at
48.7 cm than in the cold fluid case, and tapers off more sharply at r >49.0cm. The
current density and the electric field remain identical to the cold fluid case.

cm Ion Density

14
14
14

14

radius <cm>

48.6 48.8 49 49.2 49.4

FIGURE 6. The ion density including finite temperature effects.

V A TEST CASE: PROPOSED EXPERIMENT FOR
THE EDG

This concept can be easily tested in existing Malmberg-Penning traps. The cold
fluid equations were solved for electrons as the plasma species and for parameters
suited to the EDG device at Princeton [4,5]. For a very modest field of .01 Tesla
and a plasma diameter of 1.8 cm, the rotation frequency is much higher than in
the pure ion case because of the much lower mass of the electrons. Peak rotation
frequencies of 8 GHz are modeled as shown in Fig. 7. This rotation corresponds to
a beta of about 0.45. The electron density is concentrated at the edge, as expected,
and the peak density is < 8.6 x 10" /cm3. The peak current density is about 1.6
kA/cm?®. The main technical difficulty in performing an experiment in EDG is
ensuring that the walls of the cylinder do not break down because of field emission.



The electric fields, even for this low density, peak at about 90 kV/cm, as shown in
Fig. 8.
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FIGURE 7. The rotation frequencies in EDG.
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FIGURE 8. The electric field in EDG.
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Magnetic Cusp and Electric Nested- or
Single-Well Configurations for High
Density Antihydrogen and Fusion
Nonneutral Plasma Applications

C. A. Ordonez'

Department of Physics, University of North Tezas, Denton, Tezas 76203

Abstract. Malmberg-Penning traps have had limited uses for applications that require
high density nonneutral plasma confinement. For such traps, the density is severely
limited because a magnetic field is used to provide a radially inward force to balance
both self-electric and centrifugal radially outward forces. A possible way to confine
higher density nonneutral plasmas is to use a magnetic cusp configuration. An annular
nonneutral plasma would be confined in the radial magnetic field of a magnetic cusp
such that radial confinement is provided by an externally produced electric potential
well while axial confinement is provided by the magnetic field. In addition, a radial
electric potential profile having a nested-well configuration can be used to simultane-
ously confine two oppositely signed plasma species (e.g., positrons and antiprotons)
that overlap. In the work reported, various aspects of using magnetic cusp configura-
tions and electric nested-well configurations are considered. Plasma confinement with
these configurations may be useful for obtaining fast antihydrogen recombination and
trapping rates and for achieving practical fusion power production.

INTRODUCTION

Experiments are now being planned for attempts to produce and trap cold anti-
hydrogen atoms [1,2]. One approach being studied, which involves the use of nested
electric potential wells, is described in recent review articles [3,4]. Antiprotons and
positrons are confined to travel along the direction of an externally produced mag-
netic field. Externally produced nested electric potential wells along the magnetic
field are used to provide simultaneous confinement of both particle species. Con-
finement is achieved such that the antiprotons overlap the positrons, which form
a higher density plasma. A fraction of the recombined antihydrogen atoms are
produced in a low-magnetic-field-seeking state. Such atoms remain confined within
the magnetic field, which has a local minimum in strength.

1) Electronic Mail: cao@unt.edu
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A question associated with the above approach is what configuration to use for
the magnetic field. In the work presented here, a magnetic cusp is considered. The
prospect of using a magnetic cusp is supported by a recent experimental demon-
stration of good confinement of a nonneutral plasma in a cusp [5]. A magnetic
cusp is axisymmetric and, in an Andreoletti-Furth configuration [6}, can provide a
local magnetic minimum in the region where the antiprotons overlap the positrons.
A magnetic minimum within the overlap region provides a means to initially trap
newly recombined atoms in highly excited states and to subsequently de-excite the
atoms by collisions with surrounding plasma particles.

MAGNETIC CUSP CONFIGURATION

Figure 1 illustrates a cross section of the coils, magnetic field lines, electrodes,
and trapped nonneutral plasma for a magnetic cusp. Electrodes for producing
single-well confinement of a nonneutral plasma are shown in Fig. 1(a) while elec-
trodes for nested-well confinement are shown in Fig. 1(b). There is azimuthal
symmetry about the z axis. The different appearance in each set of coils, one set
located at z > 0 and one set at z < 0, is intended to show that each set carries
a current in opposition to the other in order to produce a radial magnetic field
between them. As drawn, the magnetic field lines show no axial component over
the region where a positive nonneutral annular plasma is trapped. There are six
disk shaped electrodes. The two electrodes to either side of the plasma have a
negative applied potential with respect to the other four electrodes. The difference
in potential between the electrodes produces an electric potential well suitable for
radially confining the positive annular plasma. The externally produced potential
well must counteract the self-electric force that tends to expand the plasma in the
radial direction. For the magnetic field illustrated in Fig. 1(a), the configuration
should have the interesting property of providing radial compression of a nonneu-
tral plasma that is introduced along the axis. The compression would occur as a
result of the radially outward magnetic moment force that acts on the plasma. For a
magnetic field in an Andreoletti-Furth configuration, the nonneutral plasma can be
located within a magnetic well such that magnetic and electric wells simultaneously
provide radial confinement for the annular nonneutral plasma.

For the configuration illustrated in Fig. 1(a), the radial magnetic field serves to
keep the plasma from expanding axially. Along the midplane (at z = 0), there is
no axial electric force acting on the plasma because of left /right symmetry. Hence,
there will be no azimuthal plasma rotation along the midplane. Away from the
midplane an axial electric field does exist, which causes an azimuthal ExB rota-
tion and an associated centrifugal force. Because the axial electric field strength
increases with increasing distance from the midplane, the plasma must undergo a
sheared azimuthal flow. Thus, global thermal equilibrium will not be possible.

A nonneutral plasma confined in the solenoidal magnetic field of a Malmberg-
Penning trap necessarily produces a radial electric field. The crossed fields are
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FIGURE 1. Cross section of the coils and a trapped nonneutral plasma in a magnetic cusp for
single-well electrodes (a) and nested-well electrodes (b).

responsible for an azimuthal ExB flow of the plasma. The resulting centrifugal
force, as well as the radial electric force, must be balanced by a radially inward mag-
netic vxB force. Requiring force balance for a uniform density cylindrical plasma
leads to the well known Brillouin density limit. For an annular plasma in a cusp
magnetic field, the magnetic field only needs to provide an axially inward magnetic
vxB force to balance an axially outward self-electric force, which approaches zero
near the midplane.

A number of previous analyses have explored the possibility of using nonneutral
plasmas for fusion applications [7,8]. An advantage of a nonneutral ion plasma
is that there are no energy losses via electrons (e.g., by electron heat conduction,
bremsstrahlung and cyclotron radiation). Approaches based on magnetically con-
fining nonneutral fusion plasmas require the ion density to exceed the Brillouin limit
in order to achieve a practical fusion power density. With a cusp magnetic field
such as that illustrated in Fig. 1(a), it is conceivable to confine a thin washer-like
annular nonneutral plasma at a density exceeding the Brillouin density limit.

ELECTRIC NESTED-WELL CONFIGURATION

Figure 1(b) shows a set of five nested electrodes that would be suitable for pro-
ducing a nested electric potential well for trapping oppositely signed plasmas that
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(2) (b)

FIGURE 2. lllustrations of one side of a multiply nested time-dependent potential profile at
one instant in time. The potential has a sinusoidal time dependence at each axial position such
that the potential profile looks like a wave packet with a phase velocity directed to the left and
no group velocity. .

overlap. Use of a nested-well configuration for trapping oppositely signed plasmas
that overlap is supported by both theory [9-11] and experiment [12]. First, the pos-
sibility of keeping a positron plasma (with as large a density as possible) overlapped
by a lower density of antiprotons is considered. One way to maintain a constant
overlap is to keep the antiproton plasma in a nonequilibrium plasma state referred
to as an “antishielding” [13,14] state. Schemes using moving potential barriers have
been studied experimentally [15]. Two examples of a moving-barrier approach are
illustrated in Fig. 2. A way to visualize the time dependence is as a wave packet
with zero group velocity and nonzero phase velocity. The phase velocity would be
directed toward the plasma overlap region (toward z = 0). A simple animation
with the computer program Mathematica is possible by entering

f=Exp[-x?]Cos[2n (x+i/10)];Do[Plot [f,{x,-2.5,2.5} ,PlotRange->{-1,1}],{i,10}]

and animating the result. Figure 2(a) shows about ten positron barriers (positive
¢ regions) and ten antiproton barriers (negative ¢ regions). Hundreds of closely
spaced electrodes would probably be needed to create such a profile. This may
be possible for a thin washer-like positron plasma. Nevertheless, a moving-barrier
approach that requires far fewer barriers (and electrodes) is also possible [15]. For
the profile shown in Fig. 2(a), the positron and antiproton barriers move sequen-
tially inward and each plasma species alternates extending past the other. For the
profile shown in Fig. 2(b), the first group of barriers are positron barriers so that
the positrons are always overlapped by the antiprotons. A nice feature of both
profiles in Fig. 2 is that the voltage applied to each electrode only needs to change
sinusoidally with time.

A possible problem with keeping a plasma in an antishielding state is that the
plasma temperature can increase [15]. In Ref. [16], an analysis of keeping antipro-
tons at a density of 5 x 10'® m~ and temperature of 1 K in an antishielding state
is presented. The antiprotons are considered to overlap a positron plasma at a
density of 5 x 10!®* m~2 and temperature of 1 K. The time it would take for the
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antiprotons to relax toward thermal equilibrium, which can be associated with the
timescale for antiproton heating, is found to be much larger than the timescale for
the antiprotons to approach a collisional thermal equilibrium with the positrons.
Consequently, the antiproton temperature will remain about equal to that of the
positrons. The timescale for the antiprotons to relax toward thermal equilibrium
is found to be 0.2 s for the parameters considered. This is roughly the timescale
for positrons in a 5 T field to cool by cyclotron radiation to thermal equilibrium
with the surrounding structure (see Ref. [17] for a convenient formula). With a
substantially larger number of positrons than antiprotons, the temperature of the
positrons and antiprotons should remain relatively unaffected by the antiproton
heating associated with maintaining the overlap.

The above considers the possibility of keeping a positron plasma overlapped
by a lower density of antiprotons. It is possible for the nested-well configuration
to be designed such that the plasma in the overlap region is neutral [9]. With
a neutral overlap plasma, a self-electric field will not be produced, which may
otherwise field ionize newly recombined atoms trapped in highly excited states.
For a neutral density of 5 x 10} m~3 and temperature of 1 K, the timescale for
three-body recombination is 0.1 - 1 s (see Ref. [16] for calculation details). Since this
is close to the timescale for the antiprotons to relax toward thermal equilibrium,
it is conceivable to use constant electrode potentials, as considered in Refs. [16]
and [18]. It is interesting to note that a 1 s timescale for spontaneous radiative
recombination would require the density to be about 106 m=3,

CONCLUDING REMARKS

It may be possible to increase the reaction rate (e.g., recombination or fusion)
for plasmas that are confined, in part, by an externally produced electric potential
well. The electrode voltages can be oscillated such that an acoustic standing wave
is driven. This should effectively enhance the reaction rate as a result of the higher
density compressions that are produced, although the average plasma density is not
increased. A somewhat similar enhancement is proposed for increasing the fusion
reactivity in spherical fusion plasma systems based on the periodically oscillating
plasma sphere (POPS) concept [19].

In summary, plasma confinement with magnetic cusp and electric nested- and
single-well configurations have been considered. For single-well confinement of a
nonneutral plasma in a magnetic cusp configuration, exceeding the Brillouin limit
appears possible. Such a configuration may be useful as an approach to fusion
energy production. For nested-well confinement of overlapping plasmas, a number
of characteristics of the confinement may make the configuration useful as an ap-
proach to produce and trap antihydrogen atoms. In a purely radial magnetic field,
self-compression of a thin positron plasma that is axially loaded along the axis may
be possible. The high density positron plasma can then be radially confined in an
electric potential well and the magnetic configuration can be modified to form a

449




magnetic well at the positron plasma. The nested-well configuration can be acti-
vated and an overlapping antiproton plasma introduced. The high density positron
plasma can provide for collisional de-excitation of antihydrogen atoms that are
initially recombined and trapped in highly excited states. Overall, the combined
magnetic cusp and electric nested-well configuration appears promising as a scheme

for

achieving fast antihydrogen recombination and trapping rates.
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Abstract. Complete transmission of an electron beam through a cavity is not possible
if the current exceeds the space-charge limited current. The formation of a virtual cath-
ode reflects some of the beam electrons and reduces the current transmitted through
the cavity. Transients in the injected current have been shown to lower the transmit-
ted current below the value predicted by the electrostatic Child-Langmuir law.! The
present work considers the propagation of an electron beam through a nested-well con-
figuration. Electrostatic particle-in-cell simulations are used to demonstrate that ions
can be trapped in the electric potential depression of an electron beam. Furthermore,
the trapped ions can prevent the formation of a virtual cathode for beam currents
exceeding the space-charge limit.

INTRODUCTION

An understanding of electron transport that is space-charge limited (SCL) due
to virtual cathode formation is important in a variety of fields, including sheath
research [1,2] and high power microwave sources {3,4]. A virtual cathode is a time-
dependent phenomenon that occurs when a current larger than the SCL current is
passed through a region. If a current well below the space-charge limit is injected
into a drift tube, for example, the axial velocity of the beam particles remains rel-
atively constant. As the current increases, the greater space-charge density within

) Electronic mail: cao@unt.edu
1) Luginsland, J., et al, “Virtual Cathode Formation Due to Electromagnetic Transients”, IEEE
Trans. on Plasma Science, 28(3), 901-904 (1998).

CP498, Non-Neutral Plasma Physics III, edited by John J. Bollinger, et al.
© 1999 American Institute of Physics 1-56396-913-0/99/$15.00

451




&) Inner Well

@
Outer Welf

FIGURE 1. A nested-well profile (a) and some possible configurations that produce the inner
well of a nested-well profile (b-e).

the drift tube decelerates those particles that are just entering the tube. Eventu-
ally, there is sufficient space-charge within the tube that the decelerated particles
come to rest and a virtual cathode is formed. As more particles are collected into
the virtual cathode (i.e., the potential depression where the particles have zero
axial velocity), the magnitude of the virtual cathode increases, ejecting many of
the particles from within the potential depression of the virtual cathode. After
this occurs, the magnitude of the virtual cathode decreases, allowing more parti-
cles to be transmited until the SCL current is again exceeded. The process is then
repeated. Thus, the presence of a virtual cathode represents an instability in the
beam flow, causing the magnitude of the beam current and potential depression
to oscillate. This oscillation is one mechanism used in vircators to produce high
power microwaves [3].

The present work investigates the transport of an electron beam through a nested
electric potential well configuration. Nested-well configurations are being studied
for use in Malmberg-Penning traps [5-8]. The electric potential profile for a nested-
well configuration is qualitatively illustrated in Fig. 1(a). The increasing potential
on the left side of the “outer” well accelerates electrons entering from the left. The
outer well also decelerates the electrons before exiting through the right side. As
shown in Fig. 1(a), the outer well is nested about the “inner” well. The inner well
can be created by various methods and is the primary focus of the present study.
Figure 1(b) illustrates the use of cylindrical electrodes to form the inner well. This
method is typically employed to form the inner well in nested Malmberg-Penning
traps [9].

There are alternative methods to produce the inner well. A drift tube with a



region of increased radius, as shown in Fig. 1{c), is one such configuration. Sim-
ilar structures are used in backward-wave oscillators, travelling-wave tubes and
vircators to produce high power microwaves [3]. The larger radius decreases the
potential and retards the electron beam. With a sufficiently large radius, a virtual
cathode can occur causing fractional transmission of the injected current. Another
approach, shown in Fig. 1(d), is applying a spatially varying magnetic field (rep-
resented by the curved lines) that increases the beam density by constricting the
beam. Figure 1(e) demonstrates another approach to creating a virtual cathode.
It has recently been reported that including an inner coaxial electrode enhances
the SCL current of a hollow beam compared to when the inner electrode is absent
[10]. Thus, removing a section of the inner electrode from a coaxial drift tube can
prompt the formation of a virtual cathode.

The present work investigates the effects of plasma pre-filling on the potential
depression of an electron beam near the SCL current. The particular configuration
considered is shown in Fig. 1(c). It will be shown that the plasma-filled device
can accomodate a larger current than when the device is not plasma-filled. Fur-
thermore, the plasma ions “fall” into the electric potential depression created by
the beam and are effectively trapped within it. Although numerous experiments
have demonstrated the benefits of plasma-filled microwave sources, only limited
computer simulations exist [11,12].

METHOD

The 2V, dimensional particle-in-cell (PIC) code OOPIC [13] is used to model the
physical system shown qualitatively in Fig. 1(c). OOPIC is a fully relativistic code
that can be run either electrostaticaly or electromagnetically. Only non-relativistic
parameters are considered and all simulations were run in the electrostatic mode.
The drift tube is formed from three cylindrically symmetric sections with perfectly
conducting boundary conditions applied to each section. The narrow sections have
a 10 mm radius and the wide section has a 20 mm radius. Each section is 50 mm
long. A monoenergetic, 20 keV electron beam enters at z = 0 with a 9 mm radius,
time-independent uniform current. An axial magnetic field of 3 T is applied to
strongly inhibit radial and azimuthal motion.

The main parameters chosen for each run are the beam current, the plasma
density and the plasma temperature. Before any plasma is added, a series of
simulations are performed to determine a beam current slightly less than the space-
charge limit. Using a current below this prevents the instability associated with
the formation of a virtual cathode. For the complicated boundary of the drift
tube, analytically predicting the SCL current is difficult. A rough estimate can be
determined from the infinite-length approximation. The SCL current for a solid
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FIGURE 2. Electrostatic potential for a 20 keV, 35 A electron beam entering the geometry
shown in Fig. 1(c).

beam of radius 3 in a drift tube of radius r, is given approximately by [10]

(2 —1)™?

L = IA] +21In (re/m)

Here, 7, = 1 4+ K/mc? is the relativistic mass factor for beam electrons entering
the drift tube with kinetic energy K and rest mass m. I4 = 17 kA is the Alfvén
current. For a 20 keV electron beam with a radius of 9 mm, the SCL current in
a 10 mm radius drift tube is 59 A and 27 A in a 20 mm radius tube. Although
this demonstrates that increasing the radius of a drift tube reduces its SCL current,
these values are only approximate for finite-length tubes and charge densities.

RESULTS

For the geometry shown in Fig. 1(c) and described above, injecting a 35 A electron
beam produces an electric potential depression of approximately -13 keV, as shown
in Fig. 2. The larger radius section of the drift tube more than doubled the space-
charge potential of the beam over the value present in the narrow sections. The
value of 35 A is close enough to the SCL current to significantly depress the potential
in the wide section, but is low enough to avoid forming a virtual cathode. If a 50
A beam is injected, a virtual cathode forms which indicates that the SCL current
of the wide section is less than 50 A. The phase-space plots (axial velocity vs.
axial position) of the 35 and 50 A beams are shown in Fig. 3. The presence of a
virtual cathode for the 50 A beam is evident. For comparison, an electromagnetic
simulation of the 50 A beam was also performed. The phase-space plots showed no
qualitative differences between the electrostatic and electromagnetic simulations.

If the device is prefilled with a neutral plasma, the maximum current can be
increased without producing a virtual cathode. The plasma is composed of electrons
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FIGURE 3. Phase-space (axial velocity vs. axial position) comparison of 35 (left) and 50 A
(right) beams. The electrons decelerate as they enter the wide section. Each electron in the 35
A beam exits through the right boundary. However, the formation of a virtual cathode reflects a
fraction of the 50 A beam.
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FIGURE 4. Axial phase-space for a 50 A, 20 keV electron beam (top) passing through the
device with a plasma, pre-fill and the remaining plasma ions (bottom).

and scaled-mass protons (40 x electron mass), and is loaded with a density of 5x 10
m~3 and temperature of 100 V. The plasma extends the length of the device and
to a radius of 10 mm. Injection of a 50 A beam (corresponding to a beam density of
1.5 x 10'® m~3) into the plasma-filled device no longer produces a virtual cathode,
see Fig. 4. It should be noted from Fig. 4 that the plasma electrons are no longer
present. As the beam begins travelling through the device, the plasma. electrons
are ejected axially due to the space-charge of the beam. As the space-charge of
the plasma electrons decreases, the ions “fall” into the potential depression of the
beam. With the ion space-charge reducing the space-charge of the beam, the device
can operate with a larger beam current. However, it should be noted that this
neutralization is not stationary. The ions gradually heat up and eventually “leak”
out of the potential depression. Once sufficient neutralization is no longer available,
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a virtual cathode will form when the beam current exceeds the SCL current.

CONCLUSION

An electrostatic particle-in-cell simulation has been performed which demon-
strates ion trapping and space-charge reduction in the potential depression of an
electron beam. With the ions partially neutralizing the space-charge of the beam, a
current that exceeds the vacuum space-charge limit could be propagated. Various
mechanisms that increase the electric potential depression of the beam were dis-
cussed which can form the “inner well” of a nested-well configuration. The effect
of trapped ions on virtual cathode formation for a drift tube of varying radius,
Fig. 1(c) was studied. Quantitative predictions for an increase in the space-charge
limited current within a varying radius drift tube were reported.
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Formation of a "Be Plasma
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Abstract. "Be is an isotope of beryllium that decays by electron capture to 7Li.
Because the energy of decay is too small for electron-positron production, electrons
must be present for "Be to decay. It is possible to modify the rate of decay by changing
the effective electron density in the region of the nucleus. As part of our effort to study
the effect of ionization on the decay rate we will confine a uniformly-ionized non-neutral
"Be plasma for sufficiently long periods to determine the change in the decay rate as a
function of ionization state. The "Be is formed by proton bombardment of a B4C target
containing '9B. In order to form the plasma the "Be must be extracted from the B4C
matrix, ionized, and inserted into the trapping region with as little boron, carbon, or
lithium contamination in the final plasma as possible. We are currently investigating
several possible techniques for forming a "Be plasma. Some of the possibilities are
evaporation followed by e-beam ionization, laser ablation, and electric discharge.

INTRODUCTION

"Be is a radioactive isotope with a half-life of 53.29 days which decays to "Li
through electron capture. The decay energy of 0.862 MeV is insufficient to produce
a positron—electron pair so decay is only possible through electron capture. Of
these decays 10.7% will produce a 477.6 keV gamma ray. The remainder will not
produce any detectable products other than the “Li daughter nucleus.

Because "Be only decays by electron capture it is possible to modify the rate of
decay by modifying the electron density in the vicinity of the nucleus. Several
groups have recorded measurable changes in the rate of decay. The effects of
chemical bonding show changes of up to 0.08% in BeF, [1,2]. BeO at a pressure of
270 kbar exhibits a change of 0.59% in the decay rate [3]. Ionization of "Be should
also modify the rate of decay. It is estimated that removal of the 2s electrons will
reduce the rate of decay by roughly 3% while removal of one of the 1s electrons will
reduce the rate by approximately 45%. A fully ionized "Be atom should be stable
as long as it can’t capture an electron from a neighboring atom.

CP498, Non-Neutral Plasma Physics III, edited by John J. Bollinger, et al.
© 1999 American Institute of Physics 1-56396-913-0/99/$15.00
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MEASURING THE EFFECT OF IONIZATION

The ideal device for measuring the effect of ionization on the decay rate of "Be is
an ion Malmberg-Penning trap. Such devices are now routinely used to confine ion
plasmas for periods of weeks. These devices also allow the use of Fourier Transform
Ion Cyclotron Mass Spectrometry (FT-ICR/MS) to measure the amount of Li
that has been produced in the plasma as a function of time. This would require
a mass resolution of greater than 8000 - a value that is commonly achievable in
FT-ICR/MS systems. The alternative to FT-ICR/MS for detecting the decays
would be to measure the rate at which 477.6 keV gamma rays are produced but
the geometry of an ion trap will restrict the solid angle of detection to the point
that it will be very difficult to achieve good statistics.

We are currently building a device that will confine about 10° ions in a 0.5 T
magnetic field in a Malmberg-Penning configuration. This will result in a neutral
decay rate of about 150/second with a rate of decay in a triply-ionized plasma
of approximately 83/second. The sensitivity of FT-ICR/MS would be adequate to
detect the presence of “Li within a few seconds and to make accurate measurements
within a few hours.

PRODUCTION OF "BE

"Be is produced in the atmosphere by spallation reactions from the interaction of
cosmic rays with nitrogen and oxygen atoms. It is also produced in the core of the
sun through a *He+*He fusion reaction. For laboratory use "Be is commercially
available from several sources. However, this "Be is contaminated with significant
amounts of “Li due to processing and shipping delays making detection of small
changes in the decay rate more difficult. Removal of the trace “Li is not possible
because of the very small mass difference between the two isotopes. A more pure
sample of "Be can be produced in the laboratory by proton bombardment of 1°B
through the reaction

Y B(p, )’ Be.

The rate for this reaction is significant for proton energies above about 250 keV. We
are using a 400 keV van de Graaff accelerator to bombard a target of 1°B-enriched
B4C [4] and produce "Be. Because of the presence of B and '?C in this target
there are four other possible reactions at this energy:

VB(p,y)''C - "B+ 8t + v,
"B(p,a)®Be = 2a
UB(p,2a) He
2C(p,v)BN — B3C + g+ + v,.

The cross-sections for these reactions are all significantly smaller than that for the
production of "Be. The two S-decay reactions are relatively fast (half lives of 20.39

458



(x106) 7Be Deposition
Y :

O-O 1 A 1 1 1 I 1 1 ' 1

1.5 2.0

0.0 0.5 1.0 0,
Depth (m) (x107°)

FIGURE 1. The predicted rate of deposition of "Be as a function of depth in the B4C target
for 100 pA of 300 keV protons.

minutes and 9.965 minutes respectively) and the two a-decay reactions are almost
instantaneous. The resulting products of all four reactions will not be difficult to
remove from the plasma during the formation and confinement phases. As can be
seen in figure 1, the majority of the resulting "Be will be deposited within about
1.5 p of the surface of the target with about half of it within 0.35 i of the surface.
At a proton energy of 300 keV we also found that about 7% of the “Be is ejected
from the front of the target and deposited on the surrounding surfaces. This is
about twice as much as we expected from the recoil of energetic “Be atoms. It may
be enhanced by local heating of the target by the proton beam causing some of the
beryllium to evaporate.

EXTRACTION OF "BE

Several methods of extracting the "Be from the B4C target have been proposed,
including thermal evaporation, e-beam evaporation, sputtering, electrical discharge,
and laser ablation. The primary difficulty is that the beryllium constitutes an
impurity in the target at a level of roughly 1 part in 108. At present we have
only been able to test extraction using thermal evaporation. The B4C target was
placed in a loop of tungsten wire and heated for about 30 minutes. The stainless
steel plate that was placed above the target to catch any evaporated "Be showed
no trace of radioactivity when checked for 477 keV gamma rays but the activity of
the target itself was decreased by about 25% indicating that some of the beryllium
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was evaporated out of the target but it either did not come out of the target in the
expected direction or it did not stick to the stainless steel plate. It is not known
if the beryllium came out of the target slowly over the 30 minutes or if it all came
out in a short period at the start.

CONCLUSION

It is clear that the production of “Be is well understood. From our experience with
thermal evaporation it appears that this method of extracting the "Be is probably
too inefficient and too slow to allow us to reliably form and confine a beryllium
plasma. It is probable that e-beam evaporation and sputtering will suffer from
the same difficulties as thermal evaporation. Laser ablation of the surface of the
target appears at this point to offer the most promise in achieving a reliable plasma
formation for the population of the ion trap.
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Abstract. This paper summarizes a fast numerical technique for solving Poisson’s
equation in an axisymmetric Malmberg-Penning trap. The method assumes the charge
density gn(r, z) and boundary potentials ¢(r = Ry, 2) are specified, and solves for the
electrostatic potential ¢(r, z) within the cylinder. The solution of Poisson’s equation
is often an important step in the numerical reconstruction of the nonneutral plasma
density profile n(r, z) from the axially integrated measurements of the charge density
profile, Q(r) = ¢Asn [ dzn(r, z), where g is the charge and Ay, is the effective area of
the collimator hole.

I INTRODUCTION

In nonneutral plasma experiments in a Malmberg-Penning trap [1-5], the den-
sity diagnostic typically measures an axially integrated charge density profile,
Q(r) = qAs [ dzn(r, z), where g is the charge (¢ = —e for a pure electron plasma),
Ay, is the effective area of the collimator hole, and n(r,z) is the plasma density
profile prior to dumping the plasma onto the collimating plate. From the measured
profiles for Q(r), the density profile n(r, z) is reconstructed numerically by assum-
ing that the plasma is in a state of local thermal equilibrium along magnetic field
lines with density profile n(r, z) of the form

n(r, z) x exp[—qd(r,z)/ksT]. 1

Here, ¢(r,z) is the electrostatic potential, kg is Boltzmann’s constant, and T =
const. is the plasma temperature. The process of reconstructing the density profile

CP498, Non-Neutral Plasma Physics 111, edited by John J. Bollinger, et al.
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RY = v
FIGURE 1. Trap geometry and illustrative boundary conditions for which Poisson’s equation
is solved numerically.

n(r, z) from the measured profiles for Q(r) is iterative, and requires solving Poisson’s
equation

Vi(r,z) = —4mqn(r, z) (2)

for the electrostatic potential ¢(r, z), given an initial input for the density profile
n(r, z), and the boundary conditions satisfied by the potential. Using the calculated
potential, a new approximation to the density profile is obtained that is closer to
satisfying Egs. (1) and (2) self-consistently. This process is repeated until a density
profile is found which satisfies Eqs. (1) and (2) to some prescribed level of accuracy.

Because each step of the iterative process requires solving Poisson’s equation (2)
for a prescribed density profile n(r, z), a fast method of solving Poisson’s equation
is required. A direct method (as opposed to an iterative technique) of numerically
solving Poisson’s equation (2) in cylindrical (r, z) coordinates has previously been
described [6]. However, that description [6] requires a prescription of the potential
on axis (r=0) and at some radius r = R,,. In the Electron Diffusion Gauge (EDG)
device [1-3], the potential on-axis is not known a priori. In this paper, a direct
method for solving Poisson’s equation in cylindrical coordinates [1] is described,
which extends previous work [6] to allow an unknown potential on-axis. The Poisson
solver is then benchmarked against a few analytically-solvable cases.

II NUMERICAL SOLUTION TO POISSON’S
EQUATION

The trap geometry and illustrative boundary conditions for which Poisson’s equa-
tion is solved numerically is shown in Fig. 1. The region of interest is cylindrical,
with wall radius R, and total axial length L. The potential ¢(r, z) is assumed to
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be specified at radius R,,, while at the axial boundaries (2 =0, L) the derivative is
specified, with 8¢/dz = 0. This axial boundary condition is equivalent to assuming
that the system is axially periodic about z = 0 and z = L.
For a cylindrically symmetric trap (0/06 = 0), Poisson’s equation (2) can be

expressed as

0%¢ 10¢ 8¢

5z + ey to52= —4mgn, (3)
where ¢(r, z) is the electrostatic potential, and n(r,z) is the prescribed density
profile. To solve this equation numerically, we consider the (r, 2) plane to be covered
by a uniform mesh with Ng+1 and Nz elements, and constant spacing A, and A,
in the r- and z-directions, where

1
z=(1+ 5)-Az, i=0,1,.,Nz -1,
r=j-4A, j7=0,1,.., Ng 4)
Here, A, = L/Nz and A, = R, /Ng, L is the axial length of the region of interest,
and R, is the wall radius, where the boundary potential ¢(r.= Ry, 2) is assumed

to be specified.
A cosine transform is applied by expressing ¢(r, z) as

Nz-1

80,7 = = > ) o (&%) (%)

z

Here, the ‘prime’ on the summation means that the k = 0 term has a coeflicient of
1/2. Substituting into Poisson’s equation (3) yields

¢ 104 1 (7k
or2 " rdr  AZ\Ng

2 ~
) o = —4Amqiiy, (6)

where the density profile n(r,z) has been transformed similarly to Eq. (5). The
cosine transform in Eq. (5) uses cosine functions only as a complete set of basis func-
tions in the interval from 0 to L, and results in a potential that satisfies 0¢/9z = 0
at the axial boundaries (z = 0, L). These are reasonable boundary conditions for
the application of interest here.

Next, Eq. (6) is expressed in a finite-difference form. For the region between the
trap axis and the trap wall (1 < j < Nr —1), Eq. (6) becomes

Frirr — 20 + Prt n Brijs1 — P
A? T A

1 [(nk\* - .
_E (-]V;) ¢k,j = —4mqh; (1 <j< Nrp~- 1)‘

z

(7)
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Collecting terms, it is clear that the potential at each radial location j is related to
the potential at neighboring points j + 1 by the expression

A2 7k’ . 1 . 1 i )
2+ A_g <7V—;) :l = Pri-1 (1 - Z) — @k j+1 (1 + 2—J~) = 4AnqAMy ;. (8)

To simplify notation, the following quantities are introduced:

Pr,j

~ A",’ Tk 2
Sk,j = 47rql?fnk,j, A = 24 le (-N—Z-) y (9)
Bi = 1+4, o= 1-g5

Equation (8) can then be expressed as

~YiPri1 + MeBrj — Bidrjer = Se; (1< < Nr—1) (10)

which corresponds to a set of Ng —1 equations relating the potential at each radial
location to the neighboring potential. If the potential at the radial boundary ¢
is specified, there are Nr unknown potential coefficients.

An additional equation is thus needed to solve for the Ngr unknown potential
coefficients. This equation can be found by utilizing the assumed axisymmetry of
the density and potential profiles, which leads to the result

P41 = Pr-1- (11)

Equation (11) is equivalent to the axial boundary condition 8¢/dr|,—o = 0.
Nonetheless, Eq. (11) cannot be used until a finite-difference form of Poisson’s
equation is found which is valid for j = 0 (r = 0). We note that Eqgs. (7) and (8)
are not valid for j = 0 (» = 0). To find such an expression, Poisson’s equation (6)
is rewritten in the limit as » — 0, i.e.,

. J o 10d 1 (akN'L
IIP{ o +;W‘A—g(ﬁg) P = —Amai g (12)

Using L’Hospital’s rule, the second term in this equation, which becomes indeter-
minate at 7 = 0, can be expressed as

106 0%

im-— = —=.
=07 Or  Or?

(13)

Therefore, in the limit as 7 — 0, the cosine-transformed Poisson’s equation (12)
becomes

82$k 1 /7k\?- _
2% - E (N—Z> ¢k = —47ank, (14)
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and the finite-difference form, which is valid only for j = 0, becomes

n _ 2~ 2 _ 1 rk 2 7 od
2¢>k1+1 Pro + Pr,-1 ( ) o = —4mqiigo, (15)

A? A2 \ Nz
where j = 0 has been substituted. Finally, the axial boundary condition given by
Eq. (11) can be substituted into Eq. (15). This yields

(24 )0 ~ 46k = Sk, (16)
where use has been made of Eq. (9).
Taken together, Egs. (10) and (16) represent N equations which can be used

to determine the Ng unknowns, ¢ o through ¢i n,-1. It is instructive to write the
complete set of equations in the matrix form

240 —4 0 - .0
PV VR R P,
—YNp-2 Ak —BNp-2 Pk N2
0 ~INR-1 Ak §~bk Np—1
Sko
Sk
- : (17)
Sk,NR-—Q

SkNp-1 + BNg—19k,Ng

This tridiagonal system of equations can be solved rapidly in O(Nz) operations,
and the solution can be encoded very concisely [7]. This process is repeated for each
value of k, and the various transformed potentials ¢ are substituted into Eq. (5)
to determine the desired electrostatic potential ¢(r, z).

A Poisson solver based on Eq. (17) has been developed [1] and benchmarked
against a few analytically-solvable cases. The first case is that of constant charge

density gi and constant wall potential ¢(R,). The analytical solution (in MKS
units) is

8r) = (R + L (R — 1), (18)

The potential at the wall is chosen to be ¢(R
gh = 1 Coulomb/m?, and the wall radius is R,
values into Eq. (18) gives

#(r) = 2.824 - 10*°(10™* — r?) Volts. (19)

Figure 2 shows a radial plot of the potential ¢(r) in Eq. (19). The error A¢ in the
potential calculated using the Poisson solver is normalized to the potential (¢.) on
axis (r=0). Using only thirty-two radial grid points, the error in the numerically-
calculated potential is found to be less than one part in 10°.

= 0, the charge density is
0.01 m. Substituting these

)
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3.0x108
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FIGURE 2. Plot showing the radial potential distribution for a uniform density column of

charged particles, used for benchmarking the numerical Poisson solver. The error in the potential
calculated using the Poisson solver, normalized to the potential (¢o) at 7=0), is found to be less
than one part in 10° using 32 radial gridpoints.

$(r.z)

7z
%
— 7
05 F /////// ///////'//////////;/////////
; )
Volts 0.0
-0.5
-1.0 4
0.2
. 0.6
Radius 1.0 1 Axial distance

0
FIGURE 3. Plot of the vacuum potential profile ¢(r, z) within a cylinder with a sinusoidal wall
potential given by V;cos(2wz/L). The length of the cylinder L is chosen to be four times the
cylinder radius R, and the amplitude of the sinusoidal wall potential is V; = 1 V.
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FIGURE 4. The error in the computed potential is plotted as a function of the number of
radial grid points. Initially, the error decreases proportional to the square of the number of grid
points, as expected for errors due to the finite-difference approximation. Eventually, round-off
error becomes dominant, and the error increases with increasing numbers of grid points.

The second example is that of a vacuum potential (zero plasma charge density)
with a sinusoidal wall potential V5 cos(2mz/L). The analytical solution to Poisson’s
equation is given by

Ve
¥r2) = L arkul)

cos(2wz/L)Io(2mr/L), (20)
where Ip(z) is the modified Bessel function of the first kind of order zero. Figure
3 shows a plot of the potential ¢(r,z) given by Eq. (20) for Vo = 1 V and axial
length L = 4R,,. The difference between the analytical solution and the solution
obtained with the Poisson solver using 32 radialx 32 axial grid points has been
calculated. The maximum error in the numerically calculated potential is found to
be approximately 8 x 107° V, whereas the actual potential variation is =1 V.

The maximum error in the numerically-calculated potential ¢(r, z) is plotted as
a function of the number of radial grid points in Fig. 4, assuming 32 ezial grid
points. This error is calculated using the vacuum potential test case. The error
is observed to decrease initially as the square of the number of radial grid points
used. This is likely due to the error involved in the finite-difference approximation
of the derivatives, because the first- and second-derivatives both have errors that
are dependent on the square of the grid spacing [8], i.e.,

467




Flao) = g lllro +8) = (a0 = B = T790),

F'(00) = 251f(m0 = ) ~2f(a0) + flao + A)) = T579).
1)

Eventually, at small enough grid spacing A, the error becomes dominated by round-
off error, which becomes larger with an increasing number of grid points.

IIT CONCLUSIONS

In conclusion, a Poisson solver has been developed for an azimuthally symmetric
cylindrical Malmberg-Penning trap. The solver computes the potential &(r,z),
given the charge density distribution n(r,z), and the potential distribution on
the radial boundary, ¢(R,,z). The solver has been benchmarked against a few
analytically-solvable cases, and good agreement has been obtained. For the Elec-
tron Diffusion Gauge (EDG) experiment [1-3], this Poisson solver is an important
tool in reconstructing the confined plasma density profile.
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| Ion—electron collisions
in a homogeneous magnetic field

Glunter Zwicknagel

Institut fiir Theoretische Physik, Universitit Erlangen,
Staudtstr. 7, D-91058 Erlangen, Germany

Abstract. As the basic ingredient for calculating the energy loss of ions in magne-
tized electron plasmas we investigate binary ion-electron collisions in a magnetic field
by a classical trajectory Monte-Carlo type numerical treatment. We discuss results
concerning mainly the nonlinear, strong coupling regime at low relative velocities and,
in particular, the case of an ion motion transversal to the magnetic field lines.

INTRODUCTION

The transport properties of plasmas in an external magnetic field still raise many
questions, as e.g. the energy loss of a heavy ion in a magnetized electron plasma
which represents the basic process for electron cooling in heavy ion storage rings.
Although electron cooling is now a well established method a lot of observations are
not yet fully understood, basically because only approximative descriptions of ion
stopping by magnetized electrons are available [1]. Such approximations are known
to fail in a nonlinear regime occurring for highly charged, slow ions. For nonmag-
netized electron plasmas the nonlinear stopping of heavy ions has been extensively
investigated (see Ref. [2]) using numerical simulations as an essential tool. These
studies verified particularly that the theoretical description of ion stopping can be
extended into a moderate nonlinear regime by a specific combination of the linear
response approach and the widely used binary collision model. The basic idea is
to map the true ion—electron interaction which includes all the many-body effects
responsible for dynamic screening and the excitation of plasma waves (wake field)
into an effective, spherical symmetric interaction e.g. of the form

Ze?
Admeg T

Vailr) = —

exp(~3). e

Here the screening parameter (V) may depend on the ion velocity V. It is de-
termined from the linear response treatment which describes the dynamic target
polarization in a moderate nonlinear regime still properly, although it fails to pre-
dict the stopping itself correctly, see [2] for details. Once the effective ion—electron

CP498, Non-Neutral Plasma Physics III, edited by John J. Bollinger, et al.
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interaction (1) is given the needed transport cross section for binary collision can be
calculated exactly, i.e. without any further approximations. This point is crucial
for the success of the whole scheme. Here, we claim that this improved description
should apply as well for magnetized electron targets which requires: (a) a deter-
mination of the effective interaction, i.e. A(V), from linear response including the
magnetic field and a possible anisotropic velocity distribution of the electrons via
the corresponding proper dielectric function; (b) a calculation of the energy and
momentum transfer in binary ion-electron collisions in a homogeneous magnetic
field. While work on the first topic is in progress we assume here that A and thus
Vei(r) Eq. (1) are known and focus on the binary ion—electron collisions.

ION-ELECTRON COLLISIONS AT B = Be,

In the nonmagnetic case the transport cross section for the momentum transfer
is a function only of the ion-electron relative velocity. With magnetic field addi-
tional dependencies show up like the strength of the magnetic field, the ratio of
transversal and longitudinal velocities etc.. This makes even binary collisions a
rather exhausting and challenging problem. While e.g. electron—electron collisions
still separate in a centre-of-mass and a relative motion at B # 0, the centre-of-mass
motion there couples to the relative motion for ion—electron collisions. To simplify
the situation we restrict us to parameter regimes where an entirely classical treat-
ment of the collision process is applicable and let the ion mass go to infinity after
a transformation to centre-of-mass and relative (r,,v;) coordinates. The resulting
classical equations of motion take then the form

d
I, =V,

O v, =~V Vi(lr,]) = e (va xB) — e (VxB), (2

dt

where the ion or centre-of-mass velocity V has a given constant value and the
reduced mass equals the electron mass m. Now, the homogeneous magnetic field
B is chosen as B = Be, and the ion velocity as V = (V;,0,V,). Egs. (2) can be
put in a dimensionless form containing only the two parameters Z/|Z| and B/B,
by scaling all lengths in units of the screening length A and all velocities in a
characteristic velocity vc, where By and ve are defined through

b= M _ (12m\ izl \? )
0 el 4megh3 K ¢ 4dmegmA ’

Here mvZ equals the potential energy of the electron in the Coulomb field of the
ion at a distance A. Strong coupling is expected for kinetic energies of the rela-
tive motion around mv} and smaller where the interaction dominates the collision
process rather than the kinetic energy.

The geometry for the ion-electron motion before collision is sketched in Fig. 1
both in the lab-frame and the relative system where the initial velocity is v,(0) =
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% lab-system x relative-system
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B
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z z
FIGURE 1. Collision geometry in the different frames
(’USI ,Upy » vfz) = (vg cosp — Vg, vl singp, v — Vz) Here ¢ is the initial phase of
the spiral motion of the electron. The vector g, = (~V,,0,v%,) in Fig. 1 denotes

the velocity of the guiding centre in the relative frame and allows to define an
impact parameter b with respect to a plane perpendicular to g, and an incoming
current density j = n.|g,| both needed to determine the stopping power from the
energy loss per time. For example, the stopping power in direction of the ion motion
results from the energy change AFE in individual binary collisions by the averaging

N 1dE n dy
=P V== /d3 v“,vl)|grl/d2b/ SLAB(,V b g). (4

Here f (v”,v %) represents the velocity distribution of the electron plasma. For a
deeper understanding of ion stopping by magnetized electrons it may be, however,
more advantageous to study first the averaged relative changes of energy and mo-

mentum which can be expressed by the following partial transport cross sections
(here scaled in 47 A?%)

2 d* [dy
O-AEL(nga’U(J)_)V;:) = m 47[_)\2 /_2—_ AE.L(USZ,U?L)‘/Iab)(p)
2 dy
UAE,,"‘(USzaUS)_,Vz) - m’UO 1.0 12 47I'A2/ AETH rzav_L)V:l:)b (P)
1 d?b d
oar (0%, Va) = — [ 2=z [ SE AP, 02, Ve ). (5)

The relative changes in the lab—frame of the transversal (L B) energy
—AE, /(mv})2) = [V + v + v'2, — W4, the longitudinal relative energy
—AE,/(mv3/2) = v'2, — [v%,)? and the longitudinal momentum —AP,/mvc =
V, +ol,) = [V, + vfz] = v, — 1%, sum up to AE = AE, + AE,) + 2V,AP, ap-
pearing in Eq. (4). Splitting the total energy change in these partial contributions
provides, however, further insight in the complex collision process.
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FIGURE 2. Normalized averaged changes —(AE,) = —[1}?0ap, (top) and —(AP;) =

—12,0ap, (centre} for ion-electron collisions with parallel ion motion V; = 0 and —(AE,}),
—(AP,) (bottom) for electron-electron collisions for different v% and magnetic fields B/Bq.
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The changes of energy and momentum are calculated by a numerical integra-
tion of the electron trajectories through the interaction zone [3] for given initial
conditions. The integration over the impact parameter b and the initial phase ¢
occurring in Egs. (5) are performed by a Monte-Carlo method. The number of
computed trajectories is adjusted by monitoring the convergence of the averaging
procedure.

In the particular case of V; = 0 the ion motion parallel to B can be completely
transformed into v,,. Here energy conservation yields AE; = —AE, and only
the scaled values —(AE,) = —[v§]?0aE, and —(AP,) = —v0,0ap, are of interest.
They are shown in Fig. 2 as functions of [v0,]? for different velocities of the cy-
clotron motion v$ and varying magnetic fields B/By. Positive values of —(AE})
correspond to an increase of the energy in the cyclotron motion and a blowing up
of the spirals during the collision in the average. This is observed for the low initial
v = 0.2 which is always small compared to v, (Fig. 2, left top). An oppositely

~(AEy)=—[}?0ap,, B/Bo=6 —(AE )= [ oar,, B/Bo=30
0.0 b-m-mmmmmmmmme s oo o g OEEUEERE 0.0 bommmmm e oo 2 OO OO0
-0.3
-0.3
-0.6
-0.6
09 eV =0 o—saV =0
- o—av,=01 0—oV,=01
i2 —aV,=03 ] 09 —aV, =03
’ 0—0V,=08 o—oV,=08
-15 -1.2
g B . . . . 16 L . . . ]
0.1 1.0 100 100.0 1000.0 0.1 1.0 100 100.0 1000.0
2
v v
—(AP;) = —'ngaAPzi B/Bo =6 —(AFP:) = _’ngo'AP;x B/Bo =30

0.35

035 0
0.25
0.15
0.05

-0.05

011 1 tO 10I.O 10‘0.0 1060.0 : 011 10 10‘.0 10‘0.0 100‘0.0
A w7
FIGURE 3. Normalized averaged changes —(AE;) = —[v%]%0agp, (top) and —(AP;) =

—2,0ap, (bottom) for ion-electron collisions with varying transversal ion motion V, at different
B/Bp and v% = 6.
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directed flow of energy related to a shrinking of the spirals occurs for the higher
v = 5 when v%, < v} (right top). The same behaviour was also found for other
v{. In all cases, however, the absolute values of {v9]20aE, are strongly reduced
with increasing magnetic field B. These features are recovered for the momentum
change —(AP,) = —v2,0ap, (centre), where positive values indicate a deceleration
of the electron motion parallel to B and negative ones an acceleration.

For comparison, results for repulsive electron—electron collisions are shown in the
lower part of Fig. 2. Again, an increase of B yields a strong suppression of the
energy transfer as it has been already documented e.g. in investigations on the
equilibration of transversal and longitudinal temperatures in a magnetized electron
plasma [4]. The momentum transfer (AP,) (right bottom) shows, however, a quite
different behaviour than in the ion—electron case, mainly a weaker dependence on
B and a convergence towards an always positive value for strong magnetic fields.
This is certainly related to the repulsive force.

In the attractive case of ion—electron collisions again considerably different results
are found for transversal ion motion V, # 0. Here a net energy transfer, i.e.
AE, # —AE,, results in a stopping power in transversal direction. In Fig. 3 we
present the calculated averages (AFE,),(AP,) for B/By = 6 and 30 and a initial
transversal velocity ¥9 = 6. In the nonlinear regime which is reached for small
[v9,]? the results strongly depend on the transversal ion motion V,. Here the energy
transfer (AF,) can be much larger than for V; = 0 and an interesting behaviour
is observed for the change of transversal momentum —(AP,) (Fig. 3, bottom).
There already a small V, turns the average acceleration of electrons at low [vC,]?
into a deceleration which initially increases with V,, then reaches a maximum and
decreases again at larger transversal ion motion. These results indicate that special
attention has to be paid to the actual ion motion when calculating the energy
loss related to electron cooling in storage rings where the low velocity regime is
of particular importance. Similar observations on this role of the transversal ion
motion in connection with stopping in magnetized electrons has already been made
in PIC-simulations on this subject [5]. Work to investigate this in more detail is in
progress.
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D. A. Schecter, D. H. E. Dubin, U.C. San Diego
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Tuesday, August 3
8:15am - 3:15 pm Tuesday Oral Session
Morning Session Chair - Cliff Surko, UC San Diego

8:15 am - 8:50 am T-01  Measurement of Collisional Cross-Magnetic-Field Heat
Transport in a Pure Ion Plasma, E. M. Hollmann, F.
Anderegg, C. F. Driscoll, U.C. San Diego

8:50 am - 9:25 am T-02  Experimental Observations of Nonlinear Effects in Waves
in a Nonneutral Plasma, G. W. Hart, B. G. Peterson, R.L.
Spencer, Brigham Young University

9:25 am - 10:00 am T-03  An Annular Malmberg-Penning Trap for Tests of Drift
Kinetic Theory, S. Robertson, J. Kline, University of
Colorado, B. Walch, University of Northern Colorado

10:00 am - 10:20 am Break

10:20 am - 10:55 pm T-04  Experimental Test of Resonant Particle Transport Theory,
D. L. Eggleston, Occidental College

10:55 am - 11:30 am T-05  Characteristics of 2D Turbulent Flows that Self-Organize
into Vortex Crystals, D. Z. Jin, D. H. E. Dubin, U.C. San
Diego

11:30 am - 12:05 pm T-06 Two Experimental Regimes of Asymmetry-Induced
Transport in Nonneutral Plasmas, J. M. Kriesel, C. F.
Driscoll, U.C. San Diego

12:05 pm - 1:30 pm Lunch (not provided)

Afternoon Session Chair - Fred Driscoll, UC San Diego

1:30 pm - 2:05 pm T-07 Effect of Background Gas Pressure on Electron Plasma
Dynamics in the Electron Diffusion Gauge (EDG)
Experiment, E. H. Chao, R. C. Davidson, S. F. Paul,
K. A. Morrison, Princeton University

2:05 pm - 2:40 pm T-08 Toroidal Magnetic Confinement of Nonneutral Plasmas,
Z.Yoshida, Y. Ogawa, J. Morikawa, H. Himura, S. Kondo,
C. Nakashima, H. Kakuno, M. Igbal, F. Volponi, S. Tahara,
N. Shibayama, University of Tokyo

2:40 pm - 3:15 pm T-09 Destabilization of the I=1 Diocotron Mode in Nonneutral

Plasmas, J. Finn, Diego del-Castillo-Negrete, D. C. Barnes,
Los Alamos National Laboratory
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3:15 pm - 5:30 pm Tuesday Poster Session

T-P1

T-P2

T-P3

T-P4

T-PS

T-P6

T-P7

T-P8

T-P9

T-P10

T-P11

T-P12

T-P13

T-P14

T-P15

Measurement of Plasma Mode Damping in Pure Electron Plasmas, J. R. Danielson,
C. F. Driscoll, U.C. San Diego

End Shape Effects on the m = I Diocotron Instability in Hollow Electron Columns,
A. A. Kabantsev, C. F. Driscoll, U.C. San Diego

Experiments on Viscous Transport in Pure-Electron Plasmas, J. M. Kriesel,
C. F. Driscoll, U.C. San Diego

Real-Space Imaging of Laser-Cooled Be* Ion Crystals, 3. J. Bollinger, T. B. Mitchell,
L. B. King, W. M. Itano, NIST, Boulder

Progress Toward a Sympathetically-Cooled Positron Plasma, B.J. Jelenkovic,

J. 1. Bollinger, A. S. Newbury, T. B. Mitchell, W. M. Itano, D. J. Wineland, NIST,
Boulder

Formation of a ” Be Plasma, B. G. Peterson, G. W. Hart, Brigham Young University

Experiments on Particle-Particle Interactions in Dusty Plasma Crystals by Laser
Manipulation, A. Melzer, Christian-Albrechts-Universitat Kiel

Nonlinear Energy Loss of Ions in Magnetized Electrons, G. Zwicknagel, M. Walter, C.
Toepffer, Universitat Erlangen

Consequences of lon-Ion Interactions in Fourier Transform Ion Cyclotron Resonance
Mass Spectrometry, C. L. Hendrickson, A. G. Marshall, National High Magnetic Field
Laboratory

Excitation of Solitary Perturbations from Normal Modes by Oscillating Field,
V. 1. Maslov, Kharkov Institute

Resonant Heating of Electron Sheath by Oscillations, V. 1. Maslov, Kharkov Institute
Eigenmode Analysis of the Inviscid Growth and Decay of Small Perturbations on a
Two-Dimensional Axisymmeiric Vortex, D. A. Schecter, D. H. E. Dubin, I. M. Lansky,
T. M. O'Neil, A. C. Cass, C. F. Driscoll, U.C. San Diego

Analytic Study of Two-Ring Patterns of Vortices in a Penning Trap, G. G. M. Coppa,
Politecnico di Torino

Formation of Vortex Crystals in Electron Plasmas, K. Avinash, R. Ganesh, Institute
for Plasma Research

2-D Interaction of Discreet Electron Vortices, Y. Kiwamoto, A. Mohri, K. Ito,
A. Sanpei, T. Yuyama, Kyoto University
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T-P16  Structures and Dynamics of Dusty Plasmas and Dusty Plasma Mixtures, H. Totsuji
and Plasma Physics Group, Okayama University

T-P17 Positron Trap for Positron Injector of LEPTA, S. Yakovenko, Dubna
T-P18 A New Analogy Between Nonneutral Plasmas and Geophysical Fluid Dynamics,

Diego del-Castillo-Negrete, John M. Finn, and Daniel C. Barnes, Los Alamos
National Laboratory

7:00 pm - 9:30 pm Banquet and Museum Tour
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Wednesday, August 4

8:15am - 3:15 pm

Wednesday Oral Session

Morning Session Chair - Dan Dubin, UC San Diego

8:15 am - 8:50 am

8:50 am-9:25 am

9:25 am - 10:00 am

10:00 am - 10:20 am

10:20 am - 10:55 pm

10:55 am - 11:30 am

11:30 am - 12:05 pm

12:05 pm - 1:30 pm

W-01

W-02

w-03

Break

Ww-04

W-05

W-06

Wave Angular Momentum in Nonneutral Plasmas, R.
Gould, Caltech

Modes, Crystalline Order and Antimatter Accumulation
in Strongly Coupled Ion Plasmas, T. B. Mitchell, J. J.
Bollinger, W. M. Itano, B. M. Jelenkovic, L. B. King,
D. J. Wineland, NIST, Boulder

Evidence of a Strongly-Coupled Highly-Charged Ion-
Plasma, L. Gruber, J. P. Holder, J. Glassmann, J. Steiger,
B. R. Beck, H. DeWitt, J. W. McDonald, D. A. Church,
D. Schneider, Lawrence Livermore National Laboratory,
Texas A&M University, University of Nevada Las Vegas

From Cold Neutral Atoms to Strongly Coupled Plasma, S.
Kulin, NIST, Gaithersburg

Verification of Coulomb Order in a Storage Ring, R.
Hasse, GSI Darmstadt

FEL Source Characteristics, S. Benson, Thomas
Jefferson National Accelerator Facility

Lunch (not provided)

Afternoon Session Chair - Charles Roberson, Office of Naval Research

1:30 pm - 2:05 pm

2:05 pm - 2:40 pm

2:40 pm - 3:15pm

W-07

W-08

W-09

Hamiltonian Averaging Techniques for Intense
Nonneutral Beam Propagation Through an Alternating-
Gradient Quadrupole Field, R. C. Davidson, H. Qin,
Princeton University, P. J. Channell, Los Alamos
National Laboratory

Plasma-based Particle Accelerators, G. Shvets, Princeton
University

The Interaction of Intense Laser Pulses in Plasmas for

Electron Acceleration and X-ray Generation, P. Sprangle,
Naval Research Laboratory
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3:15 pm - 5:30 pm Wednesday Poster Session

W-P1 The Penning Fusion Experiment - lIons (PFX-1), M. M. Schauer, K. R. Umstadter,
D. C. Bames, Los Alamos Nationa! Laboratory

W-P2  Kinetic and Fluid Calculations for the Periodically Oscillating Plasma Sphere
(POPS), R. A. Nebel, J. M. Finn, Los Alamos National Laboratory

W-P3  Confinement of Pure lon Plasma in a Cylindrical Current Sheet, S. F. Paul,
R. C. Davidson, C. K. Phillips, Princeton University

W-P4  Nuclear Fusion with Crystalline Beams, A. G. Ruggiero, Brookhaven National
Laboratory, J. Machuzak, Massachusetts Institute of Technology

W-PS  Nuclear Fusion with Colliding Beams, A. G. Ruggiero, Brookhaven National
Laboratory, J. Machuzak, Massachusetts Institute of Technology

W-P6  Initial Assessment of Nested-Well Plasma Traps for High Ion density Applications,
C.A. Ordonez, University of North Texas

W-P7  Self-Consistent Static Analysis of Using Nested-Well Plasma Traps for Achieving
Antihydrogen Recombination, D. D. Dolliver, C. A. Ordonez, University of North
Texas

W-P8 Analysis of Time-Dependent Effects when Operating Nested-Well Plasma Traps for
Achieving Antihydrogen Recombination, Y. Chang, D. D. Dolliver, K. F. Stephens, II,
C. A. Ordonez, University of North Texas

W-P9  Virtual Cathode Formations in Nested-Well Plasma Traps, K. F, Stephens, 11,
C. A. Ordonez, University of North Texas, R. E. Peterkin, Jr., Air Force Rescarch
Laboratory

W-P10 Self-Consistent Trapping of Noncompensated Electron Beam in Homogeneous
Magnetic Field, V. J. Maslov, 1. K. Tarasov, Kharkov Institute

W-P11 Solitary Electromagnetic Precursor in Electron Plasma, V. J. Maslov, Kharkov
Institute

W-P12 Electromagnetically Induced Transparency and Pulse Propagation in Plasmas,
B. Hafizi, P. Sprangle, R. F. Hubbard, J. R. Penano, Icarus Research, Naval Research
Laboratory

W-P13 3D Multispecies Nonlinear Perturbative Particle Simulation of Intense Nonneutral
Particle Beams, H. Qin, R. C. Davidson, W. Wei-li Lee, Princeton University

W-P14 Electron Cloud Effects in the Advanced Photon Source Storage Ring, K. C. Harkay,

R. A. Rosenberg, Argonne National Laboratory, IL, P. Colestock, Fermi National
Accelerator Laboratory, M. Furman, Lawrence Berkeley National Laboratory
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W-P15 Production of Halo Particles by Collective Mode Excitations in High Intensity Beams,
S. Strasburg, R. Davidson, Princeton University

W-P16 A4n fnvestigation of a Sheet Electron Beam Driven Backward Wave Oscillator,
K. P. Maheshwari, Y. Choyal, K. C. Mittal, D. A. University, India

W-P17 Suppression of Synchrotron Radiation by Crystallized Beams, R. Blumel, Wesleyan
University

W-P18 Series-Resonance Oscillations in Pure Electron Plasmas, K. L. Cartwright,
P. J. Christenson, J. P. Verboncoeur, C. K. Birdsall, U. C. Berkeley

W-P19 Ultracold Rubidium Atoms Near the Ionization Threshold, A. V. Estrin, C. —H. Cheng,
J. R. Ensher, P. L. Gould, E. E. Eyler, University of Connecticut

5:30 pm - 7:00 pm Tour of Princeton Plasma Physics Laboratory
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Thursday, August S
8:15am - 3:15 pm Thursday Oral Session
Morning Session Chair - John Finn, Los Alamos National Laboratory

8:15 am - 8:50 am TH-01 Collective Modes in Strongly Coupled Dusty Plasmas,
M. S. Murillo, Los Alamos National Laboratory

8:50 am - 9:25 am TH-02 Three-Dimensional Strongly-Coupled Plasma Crystal
Under Gravity Conditions and New Results from Space
Experiments, M. Zuzic, D. D. Goldbeck, J. A. Goree,
U. Konopka, G. E. Morfill, H. Rothermel, R. Sutterlin, H.
M. Thomas, Max-Planck-Institut, University of lowa

9:25 am - 10:00 am TH-03 Electron Plasmas for Spherical Ion Focusing, D. C.
Barnes, Los Alamos National Laboratory

10:00 am - 10:20 am Break

10:20 am - 10:55 pm TH-04 Proton Beam - Electron Plasma Interactions, R. E.
Pollock, M. Muterspaugh, D. Todd, Indiana University

10:55 am - 11:30 am TH-05 New Description of Collisionless Relaxation in Beam-
Plasma Systems, E. Y. Backhaus and J. S. Wurtele, U.C.
Berkeley

11:30 am - 12:05 pm TH-06 Concepts of Temperature, Order, and Equilibrium Under

Time-Dependent Confining Forces, J. Schiffer, Argonne
National Laboratory

12:05 pm - 1:00 pm Roundtable Discussion
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